{"title":"从 Evernia prunastri 中提取生物活性物质和生物聚合物用于配制抗菌生物基薄膜的替代方法","authors":"Julie Queffelec , William Beraud , Solenn Ferron , Joël Boustie , Ismael Rodríguez-González , Beatriz Díaz-Reinoso , Mª Dolores Torres , Herminia Domínguez","doi":"10.1039/d4gc02741h","DOIUrl":null,"url":null,"abstract":"<div><div>The recent growing interest in the biological properties of lichen metabolites has evidenced different needs and challenges for further exploration, including the development of green processing with safer solvents and more efficient use of energy. Microwave assisted hydrothermal processing, applied after supercritical CO<sub>2</sub> extraction, was proposed for the sequential extraction of bioactives and biopolymer fractions. Alternatively, it was combined with natural deep eutectics (NaDES) as cosolvents. Lichenic acids, antioxidants and oligosaccharides were simultaneously extracted using NaDES, and the recovered polysaccharides showed adequate mechanical properties for the formulation of films with antimicrobial action against Gram positive bacteria. An environmental assessment of the three different processes using the Eco-Scale suggested that the NaDES microwave extraction was, due to its low toxicity and good extraction yield of polysaccharides, the most sustainable of the three processes.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 19","pages":"Pages 10205-10224"},"PeriodicalIF":9.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc02741h?page=search","citationCount":"0","resultStr":"{\"title\":\"Alternatives for the extraction of bioactives and biopolymers from Evernia prunastri for the formulation of antimicrobial bio-based films†\",\"authors\":\"Julie Queffelec , William Beraud , Solenn Ferron , Joël Boustie , Ismael Rodríguez-González , Beatriz Díaz-Reinoso , Mª Dolores Torres , Herminia Domínguez\",\"doi\":\"10.1039/d4gc02741h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The recent growing interest in the biological properties of lichen metabolites has evidenced different needs and challenges for further exploration, including the development of green processing with safer solvents and more efficient use of energy. Microwave assisted hydrothermal processing, applied after supercritical CO<sub>2</sub> extraction, was proposed for the sequential extraction of bioactives and biopolymer fractions. Alternatively, it was combined with natural deep eutectics (NaDES) as cosolvents. Lichenic acids, antioxidants and oligosaccharides were simultaneously extracted using NaDES, and the recovered polysaccharides showed adequate mechanical properties for the formulation of films with antimicrobial action against Gram positive bacteria. An environmental assessment of the three different processes using the Eco-Scale suggested that the NaDES microwave extraction was, due to its low toxicity and good extraction yield of polysaccharides, the most sustainable of the three processes.</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"26 19\",\"pages\":\"Pages 10205-10224\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc02741h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224007593\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224007593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Alternatives for the extraction of bioactives and biopolymers from Evernia prunastri for the formulation of antimicrobial bio-based films†
The recent growing interest in the biological properties of lichen metabolites has evidenced different needs and challenges for further exploration, including the development of green processing with safer solvents and more efficient use of energy. Microwave assisted hydrothermal processing, applied after supercritical CO2 extraction, was proposed for the sequential extraction of bioactives and biopolymer fractions. Alternatively, it was combined with natural deep eutectics (NaDES) as cosolvents. Lichenic acids, antioxidants and oligosaccharides were simultaneously extracted using NaDES, and the recovered polysaccharides showed adequate mechanical properties for the formulation of films with antimicrobial action against Gram positive bacteria. An environmental assessment of the three different processes using the Eco-Scale suggested that the NaDES microwave extraction was, due to its low toxicity and good extraction yield of polysaccharides, the most sustainable of the three processes.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.