{"title":"用于蓝光 LED 的掺钒氧化锌薄膜的结构、纳米纹理和光学研究","authors":"Apoorva Katoch, Navneet Kaur, Davinder Kumar, Balraj Singh, Vandana Shinde, Raminder Kaur","doi":"10.1007/s10971-024-06517-3","DOIUrl":null,"url":null,"abstract":"<div><p>The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (E<sub>U</sub>) increases and the energy gap (E<sub>g</sub>) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 <i>nm</i>and within the defect emission range of 380–650 <i>nm</i> at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (E<sub>u</sub>) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"332 - 347"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, nano texture, and optical study of Vanadium-doped zinc oxide thin films for blue LEDs\",\"authors\":\"Apoorva Katoch, Navneet Kaur, Davinder Kumar, Balraj Singh, Vandana Shinde, Raminder Kaur\",\"doi\":\"10.1007/s10971-024-06517-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (E<sub>U</sub>) increases and the energy gap (E<sub>g</sub>) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 <i>nm</i>and within the defect emission range of 380–650 <i>nm</i> at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (E<sub>u</sub>) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"332 - 347\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06517-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06517-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
合理使用过渡金属,特别是钒(V),对于提高氧化锌(ZnO)的光电性能至关重要。这项研究揭示了不同钒掺杂水平对采用溶胶-凝胶浸涂工艺精确制造的氧化锌(V:ZnO)薄膜的转化效应。X 射线衍射 (XRD) 揭示了薄膜不断变化的特性,显示出随着 V 掺杂浓度的增加,薄膜的结构一致性和优先取向性也在增加。扫描电子显微镜(SEM)及其纳米纹理分形研究显示,随着掺杂水平的提高,氧化锌薄膜的纹理和排列逐渐细化。能量色散光谱(EDS)证实了氧化锌薄膜中有效的钒掺杂。此外,当乌尔巴赫能(EU)增加、能隙(Eg)减小时,紫外可见(UV-Vis)吸收系数也会增加。值得注意的是,在掺杂 3% 时,V:ZnO 在 300 纳米的本征激发区域和 380-650 纳米的缺陷发射范围内显示出卓越的发射性能,使其成为蓝光 LED 应用的理想候选材料。然而,由于大量掺杂可能会损害氧化锌的光致发光特性,因此应谨慎使用。随着氧化锌中 V 含量的增加,弱吸收区的 Urbach 尾随也随之减少。淀积和退火薄膜的厄巴赫能量(Eu)在 0.32-0.52 meV 范围内。这可以用来解释薄膜的无序性--由于掺杂,观察到厄巴赫能和光带能之间存在反比关系。这项研究成果提供了有关氧化锌中掺杂 V 的复杂性的重要信息,为先进的光电应用,尤其是蓝光 LED 的应用铺平了道路。
Structural, nano texture, and optical study of Vanadium-doped zinc oxide thin films for blue LEDs
The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (EU) increases and the energy gap (Eg) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 nmand within the defect emission range of 380–650 nm at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (Eu) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.