{"title":"跨雅穆纳活动断层系统沿线的地震诱发变形结构:喜马拉雅西北部杜恩山谷","authors":"Rekha, Sumit K Ghosh","doi":"10.1007/s12040-024-02373-5","DOIUrl":null,"url":null,"abstract":"<p>Due to continued continental convergence of Indian–Eurasian plates, the Himalayan region witnessed several high-magnitude earthquakes and is prone to major seismic events in future as well. Most of the countries with seismically active faults examine paleo seismic data in site specific as well as regional seismic hazard analyses. Hence, it is of great concern to find evidence for prehistoric earthquakes following the morphotectonic route and establish the recurrence intervals of potential earthquakes by characterising and dating large prehistoric events. The present study discusses the paleo seismicity and induced deformational features in the Trans-Yamuna region of the outer Northwest Himalaya by interpreting soft sediment deformation and paleo-liquefaction features. We targeted two sites along the Trans-Yamuna active fault system, which are located in the Sirmurital and Bharli villages; both of these locations are close to Doon Valley along the Main Boundary Thrust. Temporal distribution of paleo-liquefaction features evident major seismic events likely to occur during 16th and 19th centuries, which clearly indicates reactivation of faults in this hinterland region that could experience major rupture during the recurrence of large magnitude earthquake and therefore, constructional activities are a matter of great concern to design structures accordingly.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"26 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earthquake-induced deformation structures along Trans-Yamuna active fault system: Doon Valley, NW Himalaya\",\"authors\":\"Rekha, Sumit K Ghosh\",\"doi\":\"10.1007/s12040-024-02373-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to continued continental convergence of Indian–Eurasian plates, the Himalayan region witnessed several high-magnitude earthquakes and is prone to major seismic events in future as well. Most of the countries with seismically active faults examine paleo seismic data in site specific as well as regional seismic hazard analyses. Hence, it is of great concern to find evidence for prehistoric earthquakes following the morphotectonic route and establish the recurrence intervals of potential earthquakes by characterising and dating large prehistoric events. The present study discusses the paleo seismicity and induced deformational features in the Trans-Yamuna region of the outer Northwest Himalaya by interpreting soft sediment deformation and paleo-liquefaction features. We targeted two sites along the Trans-Yamuna active fault system, which are located in the Sirmurital and Bharli villages; both of these locations are close to Doon Valley along the Main Boundary Thrust. Temporal distribution of paleo-liquefaction features evident major seismic events likely to occur during 16th and 19th centuries, which clearly indicates reactivation of faults in this hinterland region that could experience major rupture during the recurrence of large magnitude earthquake and therefore, constructional activities are a matter of great concern to design structures accordingly.</p>\",\"PeriodicalId\":15609,\"journal\":{\"name\":\"Journal of Earth System Science\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth System Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12040-024-02373-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02373-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Earthquake-induced deformation structures along Trans-Yamuna active fault system: Doon Valley, NW Himalaya
Due to continued continental convergence of Indian–Eurasian plates, the Himalayan region witnessed several high-magnitude earthquakes and is prone to major seismic events in future as well. Most of the countries with seismically active faults examine paleo seismic data in site specific as well as regional seismic hazard analyses. Hence, it is of great concern to find evidence for prehistoric earthquakes following the morphotectonic route and establish the recurrence intervals of potential earthquakes by characterising and dating large prehistoric events. The present study discusses the paleo seismicity and induced deformational features in the Trans-Yamuna region of the outer Northwest Himalaya by interpreting soft sediment deformation and paleo-liquefaction features. We targeted two sites along the Trans-Yamuna active fault system, which are located in the Sirmurital and Bharli villages; both of these locations are close to Doon Valley along the Main Boundary Thrust. Temporal distribution of paleo-liquefaction features evident major seismic events likely to occur during 16th and 19th centuries, which clearly indicates reactivation of faults in this hinterland region that could experience major rupture during the recurrence of large magnitude earthquake and therefore, constructional activities are a matter of great concern to design structures accordingly.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.