利用高分辨率遥感技术和 SWAT 模型评估农业非点源污染:中国宁夏黄河灌区案例研究

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Song Zhang, Linlin Zhang, Qingyan Meng, Chongchang Wang, Jianjun Ma, Hong Li, Kun Ma
{"title":"利用高分辨率遥感技术和 SWAT 模型评估农业非点源污染:中国宁夏黄河灌区案例研究","authors":"Song Zhang, Linlin Zhang, Qingyan Meng, Chongchang Wang, Jianjun Ma, Hong Li, Kun Ma","doi":"10.1016/j.ecolind.2024.112578","DOIUrl":null,"url":null,"abstract":"Agricultural non-point source pollution threatens the quality of the ecological environment, human health, and safety. This study took the Sixth Drainage Ditch of the Yellow River Irrigation Area in Ningxia as the research area, set up a runoff water quality monitoring network, and comprehensively constructed an agricultural non-point source pollution monitoring model by combining the “source-sink” landscape theory, high-resolution remote sensing technology, and soil and water assessment tool (SWAT). The results showed that the simulation results of the flow and total nitrogen met the accuracy requirements. The values of total nitrogen in the calibration and validation periods were both > 0.8, and was > 0.9. The regional applicability of the model was good. Based on the simulation results, the following conclusions were drawn. (1) The temporal distribution of the pollution load was concentrated in May–October, with peaks in June and August, which is consistent with the irrigation period. (2) Spatially, the pollution load was mainly distributed in sub-basins 1 and 5. The area is dominated by cultivated land and has poor conditions that are prone to nitrogen and phosphorus loss. (3) By quantitatively identifying pollution sources, the results showed that agricultural irrigation accounted for approximately 92.88 % of total pollutants. Compared with traditional methods, the monitoring method proposed in this study systematically evaluates the potential for non-point source pollution in the region and builds a relatively complete real-time monitoring network, improving data quality and model reliability. In addition, the relationship between river network density and catchment area threshold was used to optimize the catchment area threshold in the SWAT model, and non-point source pollution parameters suitable for the basin were obtained, providing a data basis and theoretical support for the large-scale application of the model.","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in Ningxia Yellow River Irrigation District, China\",\"authors\":\"Song Zhang, Linlin Zhang, Qingyan Meng, Chongchang Wang, Jianjun Ma, Hong Li, Kun Ma\",\"doi\":\"10.1016/j.ecolind.2024.112578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural non-point source pollution threatens the quality of the ecological environment, human health, and safety. This study took the Sixth Drainage Ditch of the Yellow River Irrigation Area in Ningxia as the research area, set up a runoff water quality monitoring network, and comprehensively constructed an agricultural non-point source pollution monitoring model by combining the “source-sink” landscape theory, high-resolution remote sensing technology, and soil and water assessment tool (SWAT). The results showed that the simulation results of the flow and total nitrogen met the accuracy requirements. The values of total nitrogen in the calibration and validation periods were both > 0.8, and was > 0.9. The regional applicability of the model was good. Based on the simulation results, the following conclusions were drawn. (1) The temporal distribution of the pollution load was concentrated in May–October, with peaks in June and August, which is consistent with the irrigation period. (2) Spatially, the pollution load was mainly distributed in sub-basins 1 and 5. The area is dominated by cultivated land and has poor conditions that are prone to nitrogen and phosphorus loss. (3) By quantitatively identifying pollution sources, the results showed that agricultural irrigation accounted for approximately 92.88 % of total pollutants. Compared with traditional methods, the monitoring method proposed in this study systematically evaluates the potential for non-point source pollution in the region and builds a relatively complete real-time monitoring network, improving data quality and model reliability. In addition, the relationship between river network density and catchment area threshold was used to optimize the catchment area threshold in the SWAT model, and non-point source pollution parameters suitable for the basin were obtained, providing a data basis and theoretical support for the large-scale application of the model.\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecolind.2024.112578\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecolind.2024.112578","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业非点源污染威胁着生态环境质量、人类健康和安全。本研究以宁夏黄河灌区第六排水沟为研究区域,建立径流水质监测网络,结合 "源-汇 "景观理论、高分辨率遥感技术和水土评估工具(SWAT),全面构建了农业非点源污染监测模型。结果表明,流量和总氮的模拟结果满足精度要求。标定期和验证期的总氮值均大于 0.8,且大于 0.9。模型的区域适用性良好。根据模拟结果,得出以下结论。(1)污染负荷的时间分布集中在 5-10 月,高峰期在 6 月和 8 月,这与灌溉期一致。(2)从空间上看,污染负荷主要分布在 1 号和 5 号子流域。该区域以耕地为主,条件较差,容易造成氮、磷流失。(3) 通过定量识别污染源,结果表明农业灌溉约占污染物总量的 92.88%。与传统方法相比,本研究提出的监测方法系统地评估了该地区非点源污染的可能性,建立了较为完善的实时监测网络,提高了数据质量和模型可靠性。此外,利用河网密度与流域面积阈值的关系,优化了 SWAT 模型中的流域面积阈值,得到了适合该流域的非点源污染参数,为该模型的大规模应用提供了数据基础和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in Ningxia Yellow River Irrigation District, China
Agricultural non-point source pollution threatens the quality of the ecological environment, human health, and safety. This study took the Sixth Drainage Ditch of the Yellow River Irrigation Area in Ningxia as the research area, set up a runoff water quality monitoring network, and comprehensively constructed an agricultural non-point source pollution monitoring model by combining the “source-sink” landscape theory, high-resolution remote sensing technology, and soil and water assessment tool (SWAT). The results showed that the simulation results of the flow and total nitrogen met the accuracy requirements. The values of total nitrogen in the calibration and validation periods were both > 0.8, and was > 0.9. The regional applicability of the model was good. Based on the simulation results, the following conclusions were drawn. (1) The temporal distribution of the pollution load was concentrated in May–October, with peaks in June and August, which is consistent with the irrigation period. (2) Spatially, the pollution load was mainly distributed in sub-basins 1 and 5. The area is dominated by cultivated land and has poor conditions that are prone to nitrogen and phosphorus loss. (3) By quantitatively identifying pollution sources, the results showed that agricultural irrigation accounted for approximately 92.88 % of total pollutants. Compared with traditional methods, the monitoring method proposed in this study systematically evaluates the potential for non-point source pollution in the region and builds a relatively complete real-time monitoring network, improving data quality and model reliability. In addition, the relationship between river network density and catchment area threshold was used to optimize the catchment area threshold in the SWAT model, and non-point source pollution parameters suitable for the basin were obtained, providing a data basis and theoretical support for the large-scale application of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信