Yang Liu, Haibo Gan, Bin Qin, Hai Sun, Gongquan Sun
{"title":"用于直接甲醇燃料电池的共用阳极流场,可提高性能并减少体积","authors":"Yang Liu, Haibo Gan, Bin Qin, Hai Sun, Gongquan Sun","doi":"10.1002/ente.202401075","DOIUrl":null,"url":null,"abstract":"<p>Low-volume power density remains a significant barrier to the portable application of direct methanol fuel cell (DMFC). Herein, a shared anode flow field (SAFF) structure is introduced in an active DMFC to reduce stack volume and improve discharge performance. The differences in discharge performance between the bi-cell with SAFF and the bi-cell with traditional anode flow field (TAFF), coupled with the effect of operating conditions on performance, are investigated by polarization curve, electrochemical impedance spectra, and voltage versus time curves. The results show that the SAFF structure enhances anode mass transfer, resulting in an improvement in peak power density and voltage stability of the bi-cell compared to the TAFF structure. In addition, the bi-cell with SAFF achieves its highest peak power density at a lower methanol concentration, alleviating the methanol crossover caused by high concentration. The SAFF structure is an attractive choice for DMFC portable applications.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Shared Anode Flow Field for Direct Methanol Fuel Cell with Enhanced Performance and Decreased Volume\",\"authors\":\"Yang Liu, Haibo Gan, Bin Qin, Hai Sun, Gongquan Sun\",\"doi\":\"10.1002/ente.202401075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-volume power density remains a significant barrier to the portable application of direct methanol fuel cell (DMFC). Herein, a shared anode flow field (SAFF) structure is introduced in an active DMFC to reduce stack volume and improve discharge performance. The differences in discharge performance between the bi-cell with SAFF and the bi-cell with traditional anode flow field (TAFF), coupled with the effect of operating conditions on performance, are investigated by polarization curve, electrochemical impedance spectra, and voltage versus time curves. The results show that the SAFF structure enhances anode mass transfer, resulting in an improvement in peak power density and voltage stability of the bi-cell compared to the TAFF structure. In addition, the bi-cell with SAFF achieves its highest peak power density at a lower methanol concentration, alleviating the methanol crossover caused by high concentration. The SAFF structure is an attractive choice for DMFC portable applications.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401075\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A Shared Anode Flow Field for Direct Methanol Fuel Cell with Enhanced Performance and Decreased Volume
Low-volume power density remains a significant barrier to the portable application of direct methanol fuel cell (DMFC). Herein, a shared anode flow field (SAFF) structure is introduced in an active DMFC to reduce stack volume and improve discharge performance. The differences in discharge performance between the bi-cell with SAFF and the bi-cell with traditional anode flow field (TAFF), coupled with the effect of operating conditions on performance, are investigated by polarization curve, electrochemical impedance spectra, and voltage versus time curves. The results show that the SAFF structure enhances anode mass transfer, resulting in an improvement in peak power density and voltage stability of the bi-cell compared to the TAFF structure. In addition, the bi-cell with SAFF achieves its highest peak power density at a lower methanol concentration, alleviating the methanol crossover caused by high concentration. The SAFF structure is an attractive choice for DMFC portable applications.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.