{"title":"揭示 \"电池位置 \"对固态储氢的影响:对集成在改良可逆聚合物电解质膜燃料电池中的活性炭电极的研究","authors":"Rupinder Singh, Amandeep Singh Oberoi, Talwinder Singh","doi":"10.1002/ente.202400215","DOIUrl":null,"url":null,"abstract":"<p>The presented maiden experimental study introduces a novel cell position concept for a modified reversible polymer electrolyte membrane fuel cell with an integrated hydrogen storage (H-storage) electrode. The primary focus of the current study is to enhance the H-storage capacity of a carbon-based self-standing electrode by testing it in vertical, horizontally upward, and horizontally downward positions to meet U.S. Department of Energy objectives. The results show that the developed cell achieves the highest electrochemical hydrogen adsorption (H-adsorption) of 1.3 weight percent (wt%) in the horizontal downward position during charging, surpassing the vertical position by 36.1% and outperforming the horizontal upward position by 25.3%. The reversible rates of stored hydrogen are measured as 0.587 wt% in the vertical position, 0.781 wt% in the horizontal upward position, and 0.998 wt% in the horizontal downward position. The cell manages to deliver a peak output of 2.2 V and a maximum current of 0.5 mA during the initial discharging phase. The insights gained from this study on cell positioning are poised to inspire future research efforts aimed at enhancing hydrogen storage capacity and its reversibility.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Impact of “Cell Position” on Solid-State Hydrogen Storage: Investigations on an Activated Carbon Electrode Integrated in a Modified Reversible Polymer Electrolyte Membrane Fuel Cell\",\"authors\":\"Rupinder Singh, Amandeep Singh Oberoi, Talwinder Singh\",\"doi\":\"10.1002/ente.202400215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presented maiden experimental study introduces a novel cell position concept for a modified reversible polymer electrolyte membrane fuel cell with an integrated hydrogen storage (H-storage) electrode. The primary focus of the current study is to enhance the H-storage capacity of a carbon-based self-standing electrode by testing it in vertical, horizontally upward, and horizontally downward positions to meet U.S. Department of Energy objectives. The results show that the developed cell achieves the highest electrochemical hydrogen adsorption (H-adsorption) of 1.3 weight percent (wt%) in the horizontal downward position during charging, surpassing the vertical position by 36.1% and outperforming the horizontal upward position by 25.3%. The reversible rates of stored hydrogen are measured as 0.587 wt% in the vertical position, 0.781 wt% in the horizontal upward position, and 0.998 wt% in the horizontal downward position. The cell manages to deliver a peak output of 2.2 V and a maximum current of 0.5 mA during the initial discharging phase. The insights gained from this study on cell positioning are poised to inspire future research efforts aimed at enhancing hydrogen storage capacity and its reversibility.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400215\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400215","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
这项首次实验研究为带有集成储氢(H-storage)电极的改良型可逆聚合物电解质膜燃料电池引入了一种新的电池位置概念。当前研究的主要重点是通过在垂直、水平向上和水平向下位置进行测试,提高碳基自立式电极的储氢能力,以实现美国能源部的目标。结果表明,所开发的电池在水平向下位置充电时的电化学吸氢率(H-adsorption)最高,达到 1.3 重量百分比(wt%),比垂直位置高出 36.1%,比水平向上位置高出 25.3%。据测量,垂直位置的可逆储氢率为 0.587 重量%,水平向上位置为 0.781 重量%,水平向下位置为 0.998 重量%。在初始放电阶段,电池能输出 2.2 V 的峰值电压和 0.5 mA 的最大电流。这项研究在电池定位方面获得的启示,将激励未来旨在提高储氢能力及其可逆性的研究工作。
Unlocking the Impact of “Cell Position” on Solid-State Hydrogen Storage: Investigations on an Activated Carbon Electrode Integrated in a Modified Reversible Polymer Electrolyte Membrane Fuel Cell
The presented maiden experimental study introduces a novel cell position concept for a modified reversible polymer electrolyte membrane fuel cell with an integrated hydrogen storage (H-storage) electrode. The primary focus of the current study is to enhance the H-storage capacity of a carbon-based self-standing electrode by testing it in vertical, horizontally upward, and horizontally downward positions to meet U.S. Department of Energy objectives. The results show that the developed cell achieves the highest electrochemical hydrogen adsorption (H-adsorption) of 1.3 weight percent (wt%) in the horizontal downward position during charging, surpassing the vertical position by 36.1% and outperforming the horizontal upward position by 25.3%. The reversible rates of stored hydrogen are measured as 0.587 wt% in the vertical position, 0.781 wt% in the horizontal upward position, and 0.998 wt% in the horizontal downward position. The cell manages to deliver a peak output of 2.2 V and a maximum current of 0.5 mA during the initial discharging phase. The insights gained from this study on cell positioning are poised to inspire future research efforts aimed at enhancing hydrogen storage capacity and its reversibility.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.