纳米填料(TiO2)嵌入式有机共晶相变复合材料的长期耐久性研究

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Jeeja Jacob, John Paul, Jeyraj Selvaraj, Nasrudin Abd Rahim, Adarsh Kumar Pandey, Muhammad Shakeel Ahmad, Kumaran Kadirgama
{"title":"纳米填料(TiO2)嵌入式有机共晶相变复合材料的长期耐久性研究","authors":"Jeeja Jacob, John Paul, Jeyraj Selvaraj, Nasrudin Abd Rahim, Adarsh Kumar Pandey, Muhammad Shakeel Ahmad, Kumaran Kadirgama","doi":"10.1002/ente.202400335","DOIUrl":null,"url":null,"abstract":"Phase Change Materials (PCMs) are generally considered as a potential candidate for thermal energy storage (TES) as they possess excellent latent heat. TES system's thermal management potential is greatly hampered due to the degraded thermal conductivity of PCMs. The present study explores the long‐term durability (potential degradation) of eutectic phase change composite loaded with TiO<jats:sub>2</jats:sub> nanoparticles. The synthesized nano‐enhanced eutectic phase change composite (NePCC) logged a maximal thermal conductivity of 0.6 W/mK with 0.5% nanofillers. Accelerated thermal cycling was performed on the NePCC with 0.5% TiO<jats:sub>2</jats:sub> nanoparticles (M2). The long‐term reliability of the NePCC (M2) was confirmed through a comprehensive morphological and thermophysical analysis after 4000 melt‐freeze cycles. The nano‐enhanced eutectic phase change material showed excellent thermal stability up to 100 °C even after 4000 thermal cycles, indicating its long‐term application prospects. Fourier Transform Infrared (FTIR) results of the thermally cycled sample (M2) proved the chemical stability of the NePCC. A negligible variation was found in latent heat and phase transition temperature values (for M2) after 4000 thermal cycles. Thermophysical characterization of the thermal cycled NePCC (M2) proves the thermal stability of the synthesized NePCC (M2), which is adequate for its usage in medium‐temperature TES systems.","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Long‐Term Durability of Nanofillers (TiO2) Embedded Organic Eutectic Phase Change Composites\",\"authors\":\"Jeeja Jacob, John Paul, Jeyraj Selvaraj, Nasrudin Abd Rahim, Adarsh Kumar Pandey, Muhammad Shakeel Ahmad, Kumaran Kadirgama\",\"doi\":\"10.1002/ente.202400335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase Change Materials (PCMs) are generally considered as a potential candidate for thermal energy storage (TES) as they possess excellent latent heat. TES system's thermal management potential is greatly hampered due to the degraded thermal conductivity of PCMs. The present study explores the long‐term durability (potential degradation) of eutectic phase change composite loaded with TiO<jats:sub>2</jats:sub> nanoparticles. The synthesized nano‐enhanced eutectic phase change composite (NePCC) logged a maximal thermal conductivity of 0.6 W/mK with 0.5% nanofillers. Accelerated thermal cycling was performed on the NePCC with 0.5% TiO<jats:sub>2</jats:sub> nanoparticles (M2). The long‐term reliability of the NePCC (M2) was confirmed through a comprehensive morphological and thermophysical analysis after 4000 melt‐freeze cycles. The nano‐enhanced eutectic phase change material showed excellent thermal stability up to 100 °C even after 4000 thermal cycles, indicating its long‐term application prospects. Fourier Transform Infrared (FTIR) results of the thermally cycled sample (M2) proved the chemical stability of the NePCC. A negligible variation was found in latent heat and phase transition temperature values (for M2) after 4000 thermal cycles. Thermophysical characterization of the thermal cycled NePCC (M2) proves the thermal stability of the synthesized NePCC (M2), which is adequate for its usage in medium‐temperature TES systems.\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/ente.202400335\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/ente.202400335","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

相变材料(PCM)具有极佳的潜热,因此被普遍认为是热能储存(TES)的潜在候选材料。由于 PCM 的导热性能退化,TES 系统的热管理潜力受到了极大影响。本研究探讨了负载有 TiO2 纳米颗粒的共晶相变复合材料的长期耐久性(潜在降解)。合成的纳米增强共晶相变复合材料(NePCC)的最大热导率为 0.6 W/mK,纳米填料含量为 0.5%。对含有 0.5% TiO2 纳米颗粒(M2)的 NePCC 进行了加速热循环试验。经过 4000 次熔融-冷冻循环后,通过全面的形态和热物理分析,确认了 NePCC (M2) 的长期可靠性。该纳米增强共晶相变材料在经过 4000 次热循环后仍表现出卓越的热稳定性,最高温度可达 100 °C,这表明其具有长期应用前景。热循环样品(M2)的傅立叶变换红外光谱(FTIR)结果证明了 NePCC 的化学稳定性。经过 4000 次热循环后,潜热和相变温度值(M2)的变化可以忽略不计。热循环 NePCC(M2)的热物理特性证明了合成 NePCC(M2)的热稳定性,足以将其用于中温 TES 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Long‐Term Durability of Nanofillers (TiO2) Embedded Organic Eutectic Phase Change Composites
Phase Change Materials (PCMs) are generally considered as a potential candidate for thermal energy storage (TES) as they possess excellent latent heat. TES system's thermal management potential is greatly hampered due to the degraded thermal conductivity of PCMs. The present study explores the long‐term durability (potential degradation) of eutectic phase change composite loaded with TiO2 nanoparticles. The synthesized nano‐enhanced eutectic phase change composite (NePCC) logged a maximal thermal conductivity of 0.6 W/mK with 0.5% nanofillers. Accelerated thermal cycling was performed on the NePCC with 0.5% TiO2 nanoparticles (M2). The long‐term reliability of the NePCC (M2) was confirmed through a comprehensive morphological and thermophysical analysis after 4000 melt‐freeze cycles. The nano‐enhanced eutectic phase change material showed excellent thermal stability up to 100 °C even after 4000 thermal cycles, indicating its long‐term application prospects. Fourier Transform Infrared (FTIR) results of the thermally cycled sample (M2) proved the chemical stability of the NePCC. A negligible variation was found in latent heat and phase transition temperature values (for M2) after 4000 thermal cycles. Thermophysical characterization of the thermal cycled NePCC (M2) proves the thermal stability of the synthesized NePCC (M2), which is adequate for its usage in medium‐temperature TES systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信