{"title":"锂离子电池电极制造干燥过程的建模与优化","authors":"Yuxin Chen, Haolan Tao, Bing Li, Baorong Li, Cheng Lian, Honglai Liu","doi":"10.1002/ente.202401146","DOIUrl":null,"url":null,"abstract":"<p>Drying the electrode is a crucial process in the manufacture of lithium-ion batteries, which significantly affects the mechanical performance and cycle life of electrodes. High drying rate increases the battery production but reduces the uniformity of the binder in the electrode, which causes the detaching of the electrode from the collector. Herein, a physical model that couples solvent evaporation and binder diffusion is established to study the uneven enrichment of binder during the drying process. The results indicate that the drying process at the high solvent partial pressure and in a temperature-drop situation ensures sufficient time for the diffusion of binder, which breaks the trade-off between drying efficiency and electrode quality. Based on a comprehensive correlation analysis between process parameters and drying performance, an empirical equation is established to predict binder distribution. This work could offer insights into the formation and evolution of binder enrichment in electrodes and potentially provide guidelines for optimizing the drying processes of electrode.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Optimizing the Drying Process of Electrode Manufacturing for Lithium-Ion Batteries\",\"authors\":\"Yuxin Chen, Haolan Tao, Bing Li, Baorong Li, Cheng Lian, Honglai Liu\",\"doi\":\"10.1002/ente.202401146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drying the electrode is a crucial process in the manufacture of lithium-ion batteries, which significantly affects the mechanical performance and cycle life of electrodes. High drying rate increases the battery production but reduces the uniformity of the binder in the electrode, which causes the detaching of the electrode from the collector. Herein, a physical model that couples solvent evaporation and binder diffusion is established to study the uneven enrichment of binder during the drying process. The results indicate that the drying process at the high solvent partial pressure and in a temperature-drop situation ensures sufficient time for the diffusion of binder, which breaks the trade-off between drying efficiency and electrode quality. Based on a comprehensive correlation analysis between process parameters and drying performance, an empirical equation is established to predict binder distribution. This work could offer insights into the formation and evolution of binder enrichment in electrodes and potentially provide guidelines for optimizing the drying processes of electrode.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401146\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401146","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling and Optimizing the Drying Process of Electrode Manufacturing for Lithium-Ion Batteries
Drying the electrode is a crucial process in the manufacture of lithium-ion batteries, which significantly affects the mechanical performance and cycle life of electrodes. High drying rate increases the battery production but reduces the uniformity of the binder in the electrode, which causes the detaching of the electrode from the collector. Herein, a physical model that couples solvent evaporation and binder diffusion is established to study the uneven enrichment of binder during the drying process. The results indicate that the drying process at the high solvent partial pressure and in a temperature-drop situation ensures sufficient time for the diffusion of binder, which breaks the trade-off between drying efficiency and electrode quality. Based on a comprehensive correlation analysis between process parameters and drying performance, an empirical equation is established to predict binder distribution. This work could offer insights into the formation and evolution of binder enrichment in electrodes and potentially provide guidelines for optimizing the drying processes of electrode.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.