优化太阳能电池性能:通过整合二苯并噻吩-螺二芴-二硫代噻吩插入层,平面硅/有机杂质结混合太阳能电池实现 14.75% 的效率

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Fahim Ullah, Kamran Hasrat, Sami Iqbal, Shuang Wang
{"title":"优化太阳能电池性能:通过整合二苯并噻吩-螺二芴-二硫代噻吩插入层,平面硅/有机杂质结混合太阳能电池实现 14.75% 的效率","authors":"Fahim Ullah,&nbsp;Kamran Hasrat,&nbsp;Sami Iqbal,&nbsp;Shuang Wang","doi":"10.1002/ente.202401249","DOIUrl":null,"url":null,"abstract":"<p>Hybrid planar-Si/organic heterojunction solar cells have garnered substantial interest due to their potential for producing cost-effective, high-efficiency devices. This study investigates the photophysical properties and application of dibenzothiophene-spirobifluorene-dithienothiophene (DBBT-mCbz-DBT) in enhancing the efficiency of photovoltaic devices. Utilizing ultraviolet–visible and fluorescence spectroscopy, DBBT-mCbz-DBT is analyzed in solutions and doped films, showing maximum absorption at 380 nm and emission at 440 nm. Notably, the photoluminescence intensity in 4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl films peaks at 40–50% DBBT-mCbz-DBT concentrations, which are selected for solar cell fabrication. Enhanced light absorption and charge transport are observed with a DBBT-mCbz-DBT layer on silicon, significantly improving device performance. The planar silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (Si/PEDOT:PSS) heterojunction solar cells with DBBT-mCbz-DBT exhibit a power conversion efficiency of 14.75%, demonstrating substantial gains over baseline structures. The DBBT-mCbz-DBT layer optimizes energy band alignment, reduces recombination losses, and enhances electron transport, improving overall device efficiency. This research underscores the potential of integrating DBBT-mCbz-DBT in solar cells to achieve higher performance through simple, scalable fabrication methods.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Solar Cell Performance: Hybrid Planar-Si/Organic Heterojunction Solar Cells Achieve 14.75% Efficiency Through Dibenzothiophene-Spirobifluorene-Dithienothiophene Insertion Layer Integration\",\"authors\":\"Fahim Ullah,&nbsp;Kamran Hasrat,&nbsp;Sami Iqbal,&nbsp;Shuang Wang\",\"doi\":\"10.1002/ente.202401249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hybrid planar-Si/organic heterojunction solar cells have garnered substantial interest due to their potential for producing cost-effective, high-efficiency devices. This study investigates the photophysical properties and application of dibenzothiophene-spirobifluorene-dithienothiophene (DBBT-mCbz-DBT) in enhancing the efficiency of photovoltaic devices. Utilizing ultraviolet–visible and fluorescence spectroscopy, DBBT-mCbz-DBT is analyzed in solutions and doped films, showing maximum absorption at 380 nm and emission at 440 nm. Notably, the photoluminescence intensity in 4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl films peaks at 40–50% DBBT-mCbz-DBT concentrations, which are selected for solar cell fabrication. Enhanced light absorption and charge transport are observed with a DBBT-mCbz-DBT layer on silicon, significantly improving device performance. The planar silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (Si/PEDOT:PSS) heterojunction solar cells with DBBT-mCbz-DBT exhibit a power conversion efficiency of 14.75%, demonstrating substantial gains over baseline structures. The DBBT-mCbz-DBT layer optimizes energy band alignment, reduces recombination losses, and enhances electron transport, improving overall device efficiency. This research underscores the potential of integrating DBBT-mCbz-DBT in solar cells to achieve higher performance through simple, scalable fabrication methods.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401249\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401249","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

平面硅/有机杂结混合太阳能电池因其具有生产高性价比、高效率器件的潜力而备受关注。本研究探讨了二苯并噻吩-螺二芴-二噻吩(DBBT-mCbz-DBT)的光物理性质及其在提高光伏设备效率方面的应用。利用紫外可见光谱和荧光光谱分析了溶液和掺杂薄膜中的 DBBT-mCbz-DBT,结果表明其在 380 纳米处有最大吸收,在 440 纳米处有最大发射。值得注意的是,4,4′-二(9H-咔唑-9-基)-1,1′-联苯薄膜中的光致发光强度在 DBBT-mCbz-DBT 浓度为 40-50% 时达到峰值,可用于太阳能电池的制造。硅上的 DBBT-mCbz-DBT 层可增强光吸收和电荷传输,从而显著提高设备性能。含有 DBBT-mCbz-DBT 的平面硅/聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(Si/PEDOT:PSS)异质结太阳能电池的功率转换效率达到 14.75%,与基线结构相比有了大幅提高。DBBT-mCbz-DBT 层优化了能带排列,降低了重组损耗,增强了电子传输,从而提高了器件的整体效率。这项研究强调了在太阳能电池中集成 DBBT-mCbz-DBT 的潜力,通过简单、可扩展的制造方法实现更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing Solar Cell Performance: Hybrid Planar-Si/Organic Heterojunction Solar Cells Achieve 14.75% Efficiency Through Dibenzothiophene-Spirobifluorene-Dithienothiophene Insertion Layer Integration

Optimizing Solar Cell Performance: Hybrid Planar-Si/Organic Heterojunction Solar Cells Achieve 14.75% Efficiency Through Dibenzothiophene-Spirobifluorene-Dithienothiophene Insertion Layer Integration

Hybrid planar-Si/organic heterojunction solar cells have garnered substantial interest due to their potential for producing cost-effective, high-efficiency devices. This study investigates the photophysical properties and application of dibenzothiophene-spirobifluorene-dithienothiophene (DBBT-mCbz-DBT) in enhancing the efficiency of photovoltaic devices. Utilizing ultraviolet–visible and fluorescence spectroscopy, DBBT-mCbz-DBT is analyzed in solutions and doped films, showing maximum absorption at 380 nm and emission at 440 nm. Notably, the photoluminescence intensity in 4,4′-di(9H-carbazol-9-yl)-1,1′-biphenyl films peaks at 40–50% DBBT-mCbz-DBT concentrations, which are selected for solar cell fabrication. Enhanced light absorption and charge transport are observed with a DBBT-mCbz-DBT layer on silicon, significantly improving device performance. The planar silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (Si/PEDOT:PSS) heterojunction solar cells with DBBT-mCbz-DBT exhibit a power conversion efficiency of 14.75%, demonstrating substantial gains over baseline structures. The DBBT-mCbz-DBT layer optimizes energy band alignment, reduces recombination losses, and enhances electron transport, improving overall device efficiency. This research underscores the potential of integrating DBBT-mCbz-DBT in solar cells to achieve higher performance through simple, scalable fabrication methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信