有机聚合物骨架增强型 PEO 电解质用于全固态锂离子电池中 Li+ 的快速迁移†。

IF 5.5 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jun Chen, Quan Zhou, Xiaoyan Xu, Chuncai Zhou, Guorong Chen, Yan Li
{"title":"有机聚合物骨架增强型 PEO 电解质用于全固态锂离子电池中 Li+ 的快速迁移†。","authors":"Jun Chen,&nbsp;Quan Zhou,&nbsp;Xiaoyan Xu,&nbsp;Chuncai Zhou,&nbsp;Guorong Chen,&nbsp;Yan Li","doi":"10.1002/cjoc.202400647","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li<sup>+</sup>, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li<sup>+</sup>. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 × 10<sup>–4</sup> S·cm<sup>–1</sup>, which is greatly improved compared with 3.9 × 10<sup>–6</sup> S·cm<sup>–1</sup> of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 24","pages":"3308-3316"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries†\",\"authors\":\"Jun Chen,&nbsp;Quan Zhou,&nbsp;Xiaoyan Xu,&nbsp;Chuncai Zhou,&nbsp;Guorong Chen,&nbsp;Yan Li\",\"doi\":\"10.1002/cjoc.202400647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li<sup>+</sup>, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li<sup>+</sup>. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 × 10<sup>–4</sup> S·cm<sup>–1</sup>, which is greatly improved compared with 3.9 × 10<sup>–6</sup> S·cm<sup>–1</sup> of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.</p>\\n <p>\\n </p>\\n </div>\",\"PeriodicalId\":151,\"journal\":{\"name\":\"Chinese Journal of Chemistry\",\"volume\":\"42 24\",\"pages\":\"3308-3316\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400647\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

综合摘要随着固态电池的快速发展,固态聚合物电解质(SPE)因其优异的环保性、可设计性和成膜能力而受到广泛关注。然而,由于聚合物的导电路径有限,锂离子扩散动力学受到限制,离子导电率低是固态聚合物电解质在实际应用中面临的巨大挑战。本研究提供了一种基于聚环氧乙烷(PEO)的聚合物电解质,该电解质通过聚(六氮杂萘)(PHATN)的有机聚合物框架实现了多路离子扩散。独特的多孔通道、特定的表面特性、PHATN 中 -C=N- 基团与 Li+ 的配位,再加上 PEO 段的流动性,使 SPE 具有良好的 Li+ 传导能力。有趣的是,PHATN-PEO/双(三氟甲磺酰)亚胺锂(LiTFSI)复合电解质表现出优异的电化学性能。在室温下,PHATN-PEO 电解质的电导率可达 1.03 × 10-4 S-cm-1,与 PEO 的 3.9 × 10-6 S-cm-1 相比有很大提高。令人欣喜的是,PHATN-PEO 电解质的锂离子转移数达到了 0.61,电化学窗口增至 4.82 V。这项工作揭示了设计聚合物固态电解质的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries†

Organic Polymer Framework Enhanced PEO-Based Electrolyte for Fast Li+ Migration in All-Solid-State Lithium-ion Batteries†

With the rapid development of solid-state batteries, solid-state polymer electrolytes (SPEs) have attracted widespread attention due to their excellent environmental friendliness, designability, and forming film ability. However, due to the limited conductive path of polymers, lithium-ion diffusion kinetics are limited, and low ion conductivity is a huge challenge for SPEs in practical applications. This work provides a polyethylene oxide (PEO) based polymer electrolyte, which has multiple paths of ion diffusion caused by organic polymer framework of poly(hexaazatrinaphthalene) (PHATN). The unique porous channel, the specific surface characteristics, the coordination of -C=N- groups in PHATN with Li+, combined with the mobility of PEO segments, make the SPEs have a good ability to conduct Li+. Interestingly, the PHATN-PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) composite electrolytes exhibit excellent electrochemical properties. At room temperature, the conductivity of PHATN-PEO electrolyte can reach 1.03 × 10–4 S·cm–1, which is greatly improved compared with 3.9 × 10–6 S·cm–1 of PEO. Delightedly, the lithium-ion transference number of PHATN-PEO electrolyte achieves 0.61, and the electrochemical window increases to 4.82 V. The LFP/1%PH-PEO/Li solid-state batteries show good electrochemical cycles. This work reveals an efficient stratagem for the design of polymer solid-state electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemistry
Chinese Journal of Chemistry 化学-化学综合
CiteScore
8.80
自引率
14.80%
发文量
422
审稿时长
1.7 months
期刊介绍: The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信