Tae-Ung Wi, Yongchao Xie, Zachary H. Levell, Danyi Feng, Jung Yoon ‘Timothy’ Kim, Peng Zhu, Ahmad Elgazzar, Tae Hwa Jeon, Mohsen Shakouri, Shaoyun Hao, Zhiwei Fang, Chang Qiu, Hyun-Wook Lee, Andrea Hicks, Yuanyue Liu, Chong Liu, Haotian Wang
{"title":"通过集成电化学还原和生物合成将一氧化碳升级为生物塑料","authors":"Tae-Ung Wi, Yongchao Xie, Zachary H. Levell, Danyi Feng, Jung Yoon ‘Timothy’ Kim, Peng Zhu, Ahmad Elgazzar, Tae Hwa Jeon, Mohsen Shakouri, Shaoyun Hao, Zhiwei Fang, Chang Qiu, Hyun-Wook Lee, Andrea Hicks, Yuanyue Liu, Chong Liu, Haotian Wang","doi":"10.1038/s44160-024-00621-6","DOIUrl":null,"url":null,"abstract":"It is challenging to obtain high-value hydrocarbons that are longer than C3 via electrochemical CO2/CO reduction. Integrating electrochemical CO2/CO electrolysers with a downstream bioreactor is one solution for obtaining high-value long-chain products, but the electrolytes in these two systems are mismatched, preventing smooth integration. Here we demonstrate a porous solid electrolyte reactor that produces highly selective and electrolyte-free acetate and couple it with a biosynthesis system for generating C4+ polyhydroxybutyrate bioplastic. A finely tuned electrolyte containing biocompatible salt medium with acetate can be directly injected into the downstream bioreactor without any separation or salt-mixing processes. In the optimized coupled platform, Ralstonia eutropha bacteria can grow with acetate generated from the CO electrocatalytic reduction reactor, and produce bioplastic as the final value-added product. Integrating electrochemical CO electrolysers with a bioreactor can yield high-value long-chain carbon products, but the electrolytes for the two systems are mismatched. Now, a porous solid electrolyte reactor, which can produce acetate directly in bioelectrolyte, is demonstrated. Direct integration with a bioreactor produces bioplastic from CO via the acetate intermediate.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 11","pages":"1392-1403"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis\",\"authors\":\"Tae-Ung Wi, Yongchao Xie, Zachary H. Levell, Danyi Feng, Jung Yoon ‘Timothy’ Kim, Peng Zhu, Ahmad Elgazzar, Tae Hwa Jeon, Mohsen Shakouri, Shaoyun Hao, Zhiwei Fang, Chang Qiu, Hyun-Wook Lee, Andrea Hicks, Yuanyue Liu, Chong Liu, Haotian Wang\",\"doi\":\"10.1038/s44160-024-00621-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is challenging to obtain high-value hydrocarbons that are longer than C3 via electrochemical CO2/CO reduction. Integrating electrochemical CO2/CO electrolysers with a downstream bioreactor is one solution for obtaining high-value long-chain products, but the electrolytes in these two systems are mismatched, preventing smooth integration. Here we demonstrate a porous solid electrolyte reactor that produces highly selective and electrolyte-free acetate and couple it with a biosynthesis system for generating C4+ polyhydroxybutyrate bioplastic. A finely tuned electrolyte containing biocompatible salt medium with acetate can be directly injected into the downstream bioreactor without any separation or salt-mixing processes. In the optimized coupled platform, Ralstonia eutropha bacteria can grow with acetate generated from the CO electrocatalytic reduction reactor, and produce bioplastic as the final value-added product. Integrating electrochemical CO electrolysers with a bioreactor can yield high-value long-chain carbon products, but the electrolytes for the two systems are mismatched. Now, a porous solid electrolyte reactor, which can produce acetate directly in bioelectrolyte, is demonstrated. Direct integration with a bioreactor produces bioplastic from CO via the acetate intermediate.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"3 11\",\"pages\":\"1392-1403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00621-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00621-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Upgrading carbon monoxide to bioplastics via integrated electrochemical reduction and biosynthesis
It is challenging to obtain high-value hydrocarbons that are longer than C3 via electrochemical CO2/CO reduction. Integrating electrochemical CO2/CO electrolysers with a downstream bioreactor is one solution for obtaining high-value long-chain products, but the electrolytes in these two systems are mismatched, preventing smooth integration. Here we demonstrate a porous solid electrolyte reactor that produces highly selective and electrolyte-free acetate and couple it with a biosynthesis system for generating C4+ polyhydroxybutyrate bioplastic. A finely tuned electrolyte containing biocompatible salt medium with acetate can be directly injected into the downstream bioreactor without any separation or salt-mixing processes. In the optimized coupled platform, Ralstonia eutropha bacteria can grow with acetate generated from the CO electrocatalytic reduction reactor, and produce bioplastic as the final value-added product. Integrating electrochemical CO electrolysers with a bioreactor can yield high-value long-chain carbon products, but the electrolytes for the two systems are mismatched. Now, a porous solid electrolyte reactor, which can produce acetate directly in bioelectrolyte, is demonstrated. Direct integration with a bioreactor produces bioplastic from CO via the acetate intermediate.