Andriy Zakutayev, Matthew Jankousky, Laszlo Wolf, Yi Feng, Christopher L. Rom, Sage R. Bauers, Olaf Borkiewicz, David A. LaVan, Rebecca W. Smaha, Vladan Stevanovic
{"title":"稳定层状氮化物薄膜的合成途径","authors":"Andriy Zakutayev, Matthew Jankousky, Laszlo Wolf, Yi Feng, Christopher L. Rom, Sage R. Bauers, Olaf Borkiewicz, David A. LaVan, Rebecca W. Smaha, Vladan Stevanovic","doi":"10.1038/s44160-024-00643-0","DOIUrl":null,"url":null,"abstract":"Controlled synthesis of metastable materials away from equilibrium is of interest in materials chemistry. Thin-film deposition methods with rapid condensation of vapour precursors can readily synthesize metastable phases but often struggle to yield the thermodynamic ground state. Growing thermodynamically stable structures using kinetically limited synthesis methods is important for practical applications in electronics and energy conversion. Here we reveal a synthesis pathway to thermodynamically stable, ordered layered ternary nitride materials, and discuss why disordered metastable intermediate phases tend to form. We show that starting from elemental vapour precursors leads to a 3D long-range-disordered MgMoN2 thin-film metastable intermediate structure, with a layered short-range order that has a low-energy transformation barrier to the layered 2D-like stable structure. This synthesis approach is extended to ScTaN2, MgWN2 and MgTa2N3, and may lead to the synthesis of other layered nitride thin films with unique semiconducting and quantum properties. Synthesis of metastable materials away from thermodynamic equilibrium has been a challenge in materials chemistry, but thin-film methods often struggle to yield ground-state structures. Now, a synthesis pathway to thin films of stable layered ternary nitrides is revealed, and the tendency for metastable intermediate formation is discussed.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 12","pages":"1471-1480"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis pathways to thin films of stable layered nitrides\",\"authors\":\"Andriy Zakutayev, Matthew Jankousky, Laszlo Wolf, Yi Feng, Christopher L. Rom, Sage R. Bauers, Olaf Borkiewicz, David A. LaVan, Rebecca W. Smaha, Vladan Stevanovic\",\"doi\":\"10.1038/s44160-024-00643-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled synthesis of metastable materials away from equilibrium is of interest in materials chemistry. Thin-film deposition methods with rapid condensation of vapour precursors can readily synthesize metastable phases but often struggle to yield the thermodynamic ground state. Growing thermodynamically stable structures using kinetically limited synthesis methods is important for practical applications in electronics and energy conversion. Here we reveal a synthesis pathway to thermodynamically stable, ordered layered ternary nitride materials, and discuss why disordered metastable intermediate phases tend to form. We show that starting from elemental vapour precursors leads to a 3D long-range-disordered MgMoN2 thin-film metastable intermediate structure, with a layered short-range order that has a low-energy transformation barrier to the layered 2D-like stable structure. This synthesis approach is extended to ScTaN2, MgWN2 and MgTa2N3, and may lead to the synthesis of other layered nitride thin films with unique semiconducting and quantum properties. Synthesis of metastable materials away from thermodynamic equilibrium has been a challenge in materials chemistry, but thin-film methods often struggle to yield ground-state structures. Now, a synthesis pathway to thin films of stable layered ternary nitrides is revealed, and the tendency for metastable intermediate formation is discussed.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"3 12\",\"pages\":\"1471-1480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00643-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00643-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis pathways to thin films of stable layered nitrides
Controlled synthesis of metastable materials away from equilibrium is of interest in materials chemistry. Thin-film deposition methods with rapid condensation of vapour precursors can readily synthesize metastable phases but often struggle to yield the thermodynamic ground state. Growing thermodynamically stable structures using kinetically limited synthesis methods is important for practical applications in electronics and energy conversion. Here we reveal a synthesis pathway to thermodynamically stable, ordered layered ternary nitride materials, and discuss why disordered metastable intermediate phases tend to form. We show that starting from elemental vapour precursors leads to a 3D long-range-disordered MgMoN2 thin-film metastable intermediate structure, with a layered short-range order that has a low-energy transformation barrier to the layered 2D-like stable structure. This synthesis approach is extended to ScTaN2, MgWN2 and MgTa2N3, and may lead to the synthesis of other layered nitride thin films with unique semiconducting and quantum properties. Synthesis of metastable materials away from thermodynamic equilibrium has been a challenge in materials chemistry, but thin-film methods often struggle to yield ground-state structures. Now, a synthesis pathway to thin films of stable layered ternary nitrides is revealed, and the tendency for metastable intermediate formation is discussed.