辛格代数转移猜想的反例

Nguyen Sum
{"title":"辛格代数转移猜想的反例","authors":"Nguyen Sum","doi":"arxiv-2408.06669","DOIUrl":null,"url":null,"abstract":"Write $P_k:= \\mathbb F_2[x_1,x_2,\\ldots ,x_k]$ for the polynomial algebra\nover the prime field $\\mathbb F_2$ with two elements, in $k$ generators $x_1,\nx_2, \\ldots , x_k$, each of degree 1. The polynomial algebra $P_k$ is\nconsidered as a module over the mod-2 Steenrod algebra, $\\mathcal A$. Let\n$GL_k$ be the general linear group over the field $\\mathbb F_2$. This group\nacts naturally on $P_k$ by matrix substitution. Since the two actions of\n$\\mathcal A$ and $GL_k$ upon $P_k$ commute with each other, there is an inherit\naction of $GL_k$ on $\\mathbb F_2{\\otimes}_{\\mathcal A}P_k$. Denote by $(\\mathbb\nF_2{\\otimes}_{\\mathcal A}P_k)_n^{GL_k}$ the subspace of $\\mathbb\nF_2{\\otimes}_{\\mathcal A}P_k$ consisting of all the $GL_k$-invariant classes of\ndegree $n$. In 1989, Singer [23] defined the homological algebraic transfer\n$$\\varphi_k :\\mbox{Tor}^{\\mathcal A}_{k,n+k}(\\mathbb F_2,\\mathbb F_2)\n\\longrightarrow (\\mathbb F_2{\\otimes}_{\\mathcal A}P_k)_n^{GL_k},$$ where\n$\\mbox{Tor}^{\\mathcal{A}}_{k, k+n}(\\mathbb{F}_2, \\mathbb{F}_2)$ is the dual of\nExt$_{\\mathcal{A}}^{k,k+n}(\\mathbb F_2,\\mathbb F_2)$, the $E_2$ term of the\nAdams spectral sequence of spheres. In general, the transfer $\\varphi_k$ is not\na monomorphism and Singer made a conjecture that $\\varphi_k$ is an epimorphism\nfor any $k \\geqslant 0$. The conjecture is studied by many authors. It is true\nfor $k \\leqslant 3$ but unknown for $k \\geqslant 4$. In this paper, by using a\ntechnique of the Peterson hit problem we prove that Singer's conjecture is not\ntrue for $k=5$ and the internal degree $n = 108$. This result also refutes a\none of Ph\\'uc in [19].","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A counter-example to Singer's conjecture for the algebraic transfer\",\"authors\":\"Nguyen Sum\",\"doi\":\"arxiv-2408.06669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Write $P_k:= \\\\mathbb F_2[x_1,x_2,\\\\ldots ,x_k]$ for the polynomial algebra\\nover the prime field $\\\\mathbb F_2$ with two elements, in $k$ generators $x_1,\\nx_2, \\\\ldots , x_k$, each of degree 1. The polynomial algebra $P_k$ is\\nconsidered as a module over the mod-2 Steenrod algebra, $\\\\mathcal A$. Let\\n$GL_k$ be the general linear group over the field $\\\\mathbb F_2$. This group\\nacts naturally on $P_k$ by matrix substitution. Since the two actions of\\n$\\\\mathcal A$ and $GL_k$ upon $P_k$ commute with each other, there is an inherit\\naction of $GL_k$ on $\\\\mathbb F_2{\\\\otimes}_{\\\\mathcal A}P_k$. Denote by $(\\\\mathbb\\nF_2{\\\\otimes}_{\\\\mathcal A}P_k)_n^{GL_k}$ the subspace of $\\\\mathbb\\nF_2{\\\\otimes}_{\\\\mathcal A}P_k$ consisting of all the $GL_k$-invariant classes of\\ndegree $n$. In 1989, Singer [23] defined the homological algebraic transfer\\n$$\\\\varphi_k :\\\\mbox{Tor}^{\\\\mathcal A}_{k,n+k}(\\\\mathbb F_2,\\\\mathbb F_2)\\n\\\\longrightarrow (\\\\mathbb F_2{\\\\otimes}_{\\\\mathcal A}P_k)_n^{GL_k},$$ where\\n$\\\\mbox{Tor}^{\\\\mathcal{A}}_{k, k+n}(\\\\mathbb{F}_2, \\\\mathbb{F}_2)$ is the dual of\\nExt$_{\\\\mathcal{A}}^{k,k+n}(\\\\mathbb F_2,\\\\mathbb F_2)$, the $E_2$ term of the\\nAdams spectral sequence of spheres. In general, the transfer $\\\\varphi_k$ is not\\na monomorphism and Singer made a conjecture that $\\\\varphi_k$ is an epimorphism\\nfor any $k \\\\geqslant 0$. The conjecture is studied by many authors. It is true\\nfor $k \\\\leqslant 3$ but unknown for $k \\\\geqslant 4$. In this paper, by using a\\ntechnique of the Peterson hit problem we prove that Singer's conjecture is not\\ntrue for $k=5$ and the internal degree $n = 108$. This result also refutes a\\none of Ph\\\\'uc in [19].\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

写 $P_k:= \mathbb F_2[x_1,x_2,\ldots,x_k]$,表示素域 $\mathbb F_2$ 上的多项式代数,它有两个元素,分别是 $k$ 生元 $x_1,x_2,\ldots,x_k$,每个元素的阶数都是 1。多项式代数 $P_k$ 被视为模 2 Steenrod 代数 $\mathcal A$ 上的一个模块。让 $GL_k$ 成为域 $\mathbb F_2$ 上的一般线性群。这个群通过矩阵置换自然地与 $P_k$ 相联系。由于$\mathcal A$和$GL_k$对$P_k$的两个作用是互交的,所以$GL_k$对$\mathbb F_2{/otimes}_{\mathcal A}P_k$ 有一个继承作用。用$(\mathbbF_2{\otimes}_{\mathcal A}P_k)_n^{GL_k}$ 表示$\mathbbF_2{\otimes}_{\mathcal A}P_k$ 的子空间,它由degree $n$ 的所有 $GL_k$ 不变类组成。1989 年,辛格[23] 定义了同代数转移$$\varphi_k :\mbox{Tor}^{mathcal A}_{k,n+k}(\mathbb F_2,\mathbb F_2)\longrightarrow (\mathbb F_2{\otimes}_{mathcal A}P_k)_n^{GL_k},$$ 其中$\mbox{Tor}^{/mathcal{A}}_{k、k+n}(\mathbb{F}_2,\mathbb{F}_2)$是Ext$_{mathcal{A}}^{k,k+n}(\mathbb F_2,\mathbb F_2)$的对偶,即亚当斯球谱序列的$E_2$项。一般来说,转移 $\varphi_k$ 并不是单态的,辛格提出了一个猜想:对于任意 $k \geqslant 0$,$\varphi_k$ 都是外态性的。许多学者对该猜想进行了研究。对于 $k (斜 3),它是真实的,但对于 $k (斜 4),它是未知的。在本文中,通过使用彼得森命中问题的技巧,我们证明了辛格猜想对于 $k=5$ 和内部度数 $n = 108$ 不成立。这一结果也反驳了 Ph\'uc 在 [19] 中的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A counter-example to Singer's conjecture for the algebraic transfer
Write $P_k:= \mathbb F_2[x_1,x_2,\ldots ,x_k]$ for the polynomial algebra over the prime field $\mathbb F_2$ with two elements, in $k$ generators $x_1, x_2, \ldots , x_k$, each of degree 1. The polynomial algebra $P_k$ is considered as a module over the mod-2 Steenrod algebra, $\mathcal A$. Let $GL_k$ be the general linear group over the field $\mathbb F_2$. This group acts naturally on $P_k$ by matrix substitution. Since the two actions of $\mathcal A$ and $GL_k$ upon $P_k$ commute with each other, there is an inherit action of $GL_k$ on $\mathbb F_2{\otimes}_{\mathcal A}P_k$. Denote by $(\mathbb F_2{\otimes}_{\mathcal A}P_k)_n^{GL_k}$ the subspace of $\mathbb F_2{\otimes}_{\mathcal A}P_k$ consisting of all the $GL_k$-invariant classes of degree $n$. In 1989, Singer [23] defined the homological algebraic transfer $$\varphi_k :\mbox{Tor}^{\mathcal A}_{k,n+k}(\mathbb F_2,\mathbb F_2) \longrightarrow (\mathbb F_2{\otimes}_{\mathcal A}P_k)_n^{GL_k},$$ where $\mbox{Tor}^{\mathcal{A}}_{k, k+n}(\mathbb{F}_2, \mathbb{F}_2)$ is the dual of Ext$_{\mathcal{A}}^{k,k+n}(\mathbb F_2,\mathbb F_2)$, the $E_2$ term of the Adams spectral sequence of spheres. In general, the transfer $\varphi_k$ is not a monomorphism and Singer made a conjecture that $\varphi_k$ is an epimorphism for any $k \geqslant 0$. The conjecture is studied by many authors. It is true for $k \leqslant 3$ but unknown for $k \geqslant 4$. In this paper, by using a technique of the Peterson hit problem we prove that Singer's conjecture is not true for $k=5$ and the internal degree $n = 108$. This result also refutes a one of Ph\'uc in [19].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信