Hadi Hassanzada, Hamid Torabi, Hanieh Mirebrahimi, Ameneh Babaee
{"title":"离散运动规划的离散拓扑复杂性","authors":"Hadi Hassanzada, Hamid Torabi, Hanieh Mirebrahimi, Ameneh Babaee","doi":"arxiv-2408.05858","DOIUrl":null,"url":null,"abstract":"In this paper we generalize the discrete r-homotopy to the discrete (s,\nr)-homotopy. Then by this notion, we introduce the discrete motion planning for\nrobots which can move discreetly. Moreover, in this case the number of motion\nplanning, called discrete topological complexity, required for these robots is\nreduced. Then we prove some properties of discrete topological complexity; For\ninstance, we show that a discrete motion planning in a metric space X exists if\nand only if X is a discrete contractible space. Also, we prove that the\ndiscrete topological complexity depends only on the strictly discrete homotopy\ntype of spaces.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Discrete Topological Complexity of Discrete Motion Planning\",\"authors\":\"Hadi Hassanzada, Hamid Torabi, Hanieh Mirebrahimi, Ameneh Babaee\",\"doi\":\"arxiv-2408.05858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we generalize the discrete r-homotopy to the discrete (s,\\nr)-homotopy. Then by this notion, we introduce the discrete motion planning for\\nrobots which can move discreetly. Moreover, in this case the number of motion\\nplanning, called discrete topological complexity, required for these robots is\\nreduced. Then we prove some properties of discrete topological complexity; For\\ninstance, we show that a discrete motion planning in a metric space X exists if\\nand only if X is a discrete contractible space. Also, we prove that the\\ndiscrete topological complexity depends only on the strictly discrete homotopy\\ntype of spaces.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们将离散 R 同调概括为离散 (s,r) 同调。然后,根据这一概念,我们为可以离散移动的机器人引入了离散运动规划。此外,在这种情况下,这些机器人所需的运动规划次数(称为离散拓扑复杂性)也会减少。然后,我们证明了离散拓扑复杂性的一些性质;例如,我们证明了如果且仅当 X 是离散可收缩空间时,才存在度量空间 X 中的离散运动规划。此外,我们还证明了离散拓扑复杂性只取决于空间的严格离散同调类型。
A Discrete Topological Complexity of Discrete Motion Planning
In this paper we generalize the discrete r-homotopy to the discrete (s,
r)-homotopy. Then by this notion, we introduce the discrete motion planning for
robots which can move discreetly. Moreover, in this case the number of motion
planning, called discrete topological complexity, required for these robots is
reduced. Then we prove some properties of discrete topological complexity; For
instance, we show that a discrete motion planning in a metric space X exists if
and only if X is a discrete contractible space. Also, we prove that the
discrete topological complexity depends only on the strictly discrete homotopy
type of spaces.