{"title":"受限$L_\\infty$-代数和衍生米尔诺-摩尔定理","authors":"Hadrian Heine","doi":"arxiv-2408.06917","DOIUrl":null,"url":null,"abstract":"For every stable presentably symmetric monoidal $\\infty$-category\n$\\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the\ncocommutative cooperad to construct an enveloping Hopf algebra functor\n$\\mathcal{U}: \\mathrm{Alg}_{\\mathrm{Lie}}(\\mathcal{C}) \\to\n\\mathrm{Hopf}(\\mathcal{C})$ from spectral Lie algebras in $\\mathcal{C}$ to\ncocommutative Hopf algebras in $\\mathcal{C}$ left adjoint to a functor of\nderived primitive elements. We prove that if $\\mathcal{C}$ is a rational stable\npresentably symmetric monoidal $\\infty$-category, the enveloping Hopf algebra\nfunctor is fully faithful. We conclude that Lie algebras in $\\mathcal{C}$ are\nalgebras over the monad underlying the adjunction $T \\simeq \\mathcal{U} \\circ\n\\mathrm{Lie}: \\mathcal{C} \\rightleftarrows\n\\mathrm{Alg}_{\\mathrm{Lie}}(\\mathcal{C}) \\to \\mathrm{Hopf}(\\mathcal{C}), $\nwhere $\\mathrm{Lie}$ is the free Lie algebra and $\\mathrm{T}$ is the tensor\nalgebra. For general $\\mathcal{C}$ we introduce the notion of restricted\n$L_\\infty$-algebra as an algebra over the latter adjunction. For any field $K$\nwe construct a forgetful functor from restricted Lie algebras in connective\n$H(K)$-modules to the $\\infty$-category underlying a right induced model\nstructure on simplicial restricted Lie algebras over $K $.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted $L_\\\\infty$-algebras and a derived Milnor-Moore theorem\",\"authors\":\"Hadrian Heine\",\"doi\":\"arxiv-2408.06917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every stable presentably symmetric monoidal $\\\\infty$-category\\n$\\\\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the\\ncocommutative cooperad to construct an enveloping Hopf algebra functor\\n$\\\\mathcal{U}: \\\\mathrm{Alg}_{\\\\mathrm{Lie}}(\\\\mathcal{C}) \\\\to\\n\\\\mathrm{Hopf}(\\\\mathcal{C})$ from spectral Lie algebras in $\\\\mathcal{C}$ to\\ncocommutative Hopf algebras in $\\\\mathcal{C}$ left adjoint to a functor of\\nderived primitive elements. We prove that if $\\\\mathcal{C}$ is a rational stable\\npresentably symmetric monoidal $\\\\infty$-category, the enveloping Hopf algebra\\nfunctor is fully faithful. We conclude that Lie algebras in $\\\\mathcal{C}$ are\\nalgebras over the monad underlying the adjunction $T \\\\simeq \\\\mathcal{U} \\\\circ\\n\\\\mathrm{Lie}: \\\\mathcal{C} \\\\rightleftarrows\\n\\\\mathrm{Alg}_{\\\\mathrm{Lie}}(\\\\mathcal{C}) \\\\to \\\\mathrm{Hopf}(\\\\mathcal{C}), $\\nwhere $\\\\mathrm{Lie}$ is the free Lie algebra and $\\\\mathrm{T}$ is the tensor\\nalgebra. For general $\\\\mathcal{C}$ we introduce the notion of restricted\\n$L_\\\\infty$-algebra as an algebra over the latter adjunction. For any field $K$\\nwe construct a forgetful functor from restricted Lie algebras in connective\\n$H(K)$-modules to the $\\\\infty$-category underlying a right induced model\\nstructure on simplicial restricted Lie algebras over $K $.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Restricted $L_\infty$-algebras and a derived Milnor-Moore theorem
For every stable presentably symmetric monoidal $\infty$-category
$\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the
cocommutative cooperad to construct an enveloping Hopf algebra functor
$\mathcal{U}: \mathrm{Alg}_{\mathrm{Lie}}(\mathcal{C}) \to
\mathrm{Hopf}(\mathcal{C})$ from spectral Lie algebras in $\mathcal{C}$ to
cocommutative Hopf algebras in $\mathcal{C}$ left adjoint to a functor of
derived primitive elements. We prove that if $\mathcal{C}$ is a rational stable
presentably symmetric monoidal $\infty$-category, the enveloping Hopf algebra
functor is fully faithful. We conclude that Lie algebras in $\mathcal{C}$ are
algebras over the monad underlying the adjunction $T \simeq \mathcal{U} \circ
\mathrm{Lie}: \mathcal{C} \rightleftarrows
\mathrm{Alg}_{\mathrm{Lie}}(\mathcal{C}) \to \mathrm{Hopf}(\mathcal{C}), $
where $\mathrm{Lie}$ is the free Lie algebra and $\mathrm{T}$ is the tensor
algebra. For general $\mathcal{C}$ we introduce the notion of restricted
$L_\infty$-algebra as an algebra over the latter adjunction. For any field $K$
we construct a forgetful functor from restricted Lie algebras in connective
$H(K)$-modules to the $\infty$-category underlying a right induced model
structure on simplicial restricted Lie algebras over $K $.