受限$L_\infty$-代数和衍生米尔诺-摩尔定理

Hadrian Heine
{"title":"受限$L_\\infty$-代数和衍生米尔诺-摩尔定理","authors":"Hadrian Heine","doi":"arxiv-2408.06917","DOIUrl":null,"url":null,"abstract":"For every stable presentably symmetric monoidal $\\infty$-category\n$\\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the\ncocommutative cooperad to construct an enveloping Hopf algebra functor\n$\\mathcal{U}: \\mathrm{Alg}_{\\mathrm{Lie}}(\\mathcal{C}) \\to\n\\mathrm{Hopf}(\\mathcal{C})$ from spectral Lie algebras in $\\mathcal{C}$ to\ncocommutative Hopf algebras in $\\mathcal{C}$ left adjoint to a functor of\nderived primitive elements. We prove that if $\\mathcal{C}$ is a rational stable\npresentably symmetric monoidal $\\infty$-category, the enveloping Hopf algebra\nfunctor is fully faithful. We conclude that Lie algebras in $\\mathcal{C}$ are\nalgebras over the monad underlying the adjunction $T \\simeq \\mathcal{U} \\circ\n\\mathrm{Lie}: \\mathcal{C} \\rightleftarrows\n\\mathrm{Alg}_{\\mathrm{Lie}}(\\mathcal{C}) \\to \\mathrm{Hopf}(\\mathcal{C}), $\nwhere $\\mathrm{Lie}$ is the free Lie algebra and $\\mathrm{T}$ is the tensor\nalgebra. For general $\\mathcal{C}$ we introduce the notion of restricted\n$L_\\infty$-algebra as an algebra over the latter adjunction. For any field $K$\nwe construct a forgetful functor from restricted Lie algebras in connective\n$H(K)$-modules to the $\\infty$-category underlying a right induced model\nstructure on simplicial restricted Lie algebras over $K $.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted $L_\\\\infty$-algebras and a derived Milnor-Moore theorem\",\"authors\":\"Hadrian Heine\",\"doi\":\"arxiv-2408.06917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For every stable presentably symmetric monoidal $\\\\infty$-category\\n$\\\\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the\\ncocommutative cooperad to construct an enveloping Hopf algebra functor\\n$\\\\mathcal{U}: \\\\mathrm{Alg}_{\\\\mathrm{Lie}}(\\\\mathcal{C}) \\\\to\\n\\\\mathrm{Hopf}(\\\\mathcal{C})$ from spectral Lie algebras in $\\\\mathcal{C}$ to\\ncocommutative Hopf algebras in $\\\\mathcal{C}$ left adjoint to a functor of\\nderived primitive elements. We prove that if $\\\\mathcal{C}$ is a rational stable\\npresentably symmetric monoidal $\\\\infty$-category, the enveloping Hopf algebra\\nfunctor is fully faithful. We conclude that Lie algebras in $\\\\mathcal{C}$ are\\nalgebras over the monad underlying the adjunction $T \\\\simeq \\\\mathcal{U} \\\\circ\\n\\\\mathrm{Lie}: \\\\mathcal{C} \\\\rightleftarrows\\n\\\\mathrm{Alg}_{\\\\mathrm{Lie}}(\\\\mathcal{C}) \\\\to \\\\mathrm{Hopf}(\\\\mathcal{C}), $\\nwhere $\\\\mathrm{Lie}$ is the free Lie algebra and $\\\\mathrm{T}$ is the tensor\\nalgebra. For general $\\\\mathcal{C}$ we introduce the notion of restricted\\n$L_\\\\infty$-algebra as an algebra over the latter adjunction. For any field $K$\\nwe construct a forgetful functor from restricted Lie algebras in connective\\n$H(K)$-modules to the $\\\\infty$-category underlying a right induced model\\nstructure on simplicial restricted Lie algebras over $K $.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个稳定的现存对称单环$\infty$-category$\mathcal{C}$,我们使用谱Lie操作数和交换合作数之间的科斯祖尔对偶性来构造一个包络霍普夫代数函子$\mathcal{U}:\(\mathrm{Alg}_{mathrm{Lie}}(\mathcal{C}) \to\mathrm{Hopf}(\mathcal{C})$ 从 $\mathcal{C}$ 中的谱列代数到 $\mathcal{C}$ 中的交换霍普夫代数的左邻接于衍生基元的函子。我们证明,如果 $\mathcal{C}$ 是一个有理的稳定可呈现对称单环 $\infty$ 类别,那么包络霍普夫代数函子就是完全忠实的。我们的结论是,$\mathcal{C}$ 中的列代数是隶属于秩$T \simeq \mathcal{U}的单体的代数。\Circ\mathrm{Lie}:\C\rightleftarrows\mathrm{Alg}_{mathrm{Lie}}(\mathcal{C}) \to \mathrm{Hopf}(\mathcal{C}), 其中 $\mathrm{Lie}$ 是自由列代数,$/mathrm{T}$ 是张量代数。对于一般的$\mathcal{C}$,我们引入受限$L_\infty$-代数的概念,作为后一个迭加的代数。对于任意域$K$,我们构建了一个从连通$H(K)$模块中的受限列代数到$K$上简单受限列代数的右诱导模型结构的$\infty$类别的遗忘函子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted $L_\infty$-algebras and a derived Milnor-Moore theorem
For every stable presentably symmetric monoidal $\infty$-category $\mathcal{C}$ we use the Koszul duality between the spectral Lie operad and the cocommutative cooperad to construct an enveloping Hopf algebra functor $\mathcal{U}: \mathrm{Alg}_{\mathrm{Lie}}(\mathcal{C}) \to \mathrm{Hopf}(\mathcal{C})$ from spectral Lie algebras in $\mathcal{C}$ to cocommutative Hopf algebras in $\mathcal{C}$ left adjoint to a functor of derived primitive elements. We prove that if $\mathcal{C}$ is a rational stable presentably symmetric monoidal $\infty$-category, the enveloping Hopf algebra functor is fully faithful. We conclude that Lie algebras in $\mathcal{C}$ are algebras over the monad underlying the adjunction $T \simeq \mathcal{U} \circ \mathrm{Lie}: \mathcal{C} \rightleftarrows \mathrm{Alg}_{\mathrm{Lie}}(\mathcal{C}) \to \mathrm{Hopf}(\mathcal{C}), $ where $\mathrm{Lie}$ is the free Lie algebra and $\mathrm{T}$ is the tensor algebra. For general $\mathcal{C}$ we introduce the notion of restricted $L_\infty$-algebra as an algebra over the latter adjunction. For any field $K$ we construct a forgetful functor from restricted Lie algebras in connective $H(K)$-modules to the $\infty$-category underlying a right induced model structure on simplicial restricted Lie algebras over $K $.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信