流形的分布式卢斯特尼克-施奈雷曼范畴

Ekansh Jauhari
{"title":"流形的分布式卢斯特尼克-施奈雷曼范畴","authors":"Ekansh Jauhari","doi":"arxiv-2408.11036","DOIUrl":null,"url":null,"abstract":"We obtain several sufficient conditions for the distributional LS-category\n(dcat) of closed manifolds to be maximum, i.e., equal to their classical\nLS-category (cat). This gives us many new computations of dcat, especially for\nessential manifolds and (generalized) connected sums. In the process, we also\ndetermine the dcat of closed 3-manifolds having torsion-free fundamental groups\nand some closed geometrically decomposable 4-manifolds. Finally, we extend some\nof our results to closed Alexandrov spaces and discuss their cat and dcat in\ndimension 3.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributional Lusternik-Schnirelmann category of manifolds\",\"authors\":\"Ekansh Jauhari\",\"doi\":\"arxiv-2408.11036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain several sufficient conditions for the distributional LS-category\\n(dcat) of closed manifolds to be maximum, i.e., equal to their classical\\nLS-category (cat). This gives us many new computations of dcat, especially for\\nessential manifolds and (generalized) connected sums. In the process, we also\\ndetermine the dcat of closed 3-manifolds having torsion-free fundamental groups\\nand some closed geometrically decomposable 4-manifolds. Finally, we extend some\\nof our results to closed Alexandrov spaces and discuss their cat and dcat in\\ndimension 3.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了封闭流形的分布LS范畴(dcat)最大的几个充分条件,即等于它们的经典LS范畴(cat)。这为我们提供了许多关于 dcat 的新计算,尤其是关于幂指数流形和(广义)连通和的计算。在此过程中,我们还确定了具有无扭基群的封闭 3-漫流形和一些封闭几何可分解 4-漫流形的 dcat。最后,我们将一些结果扩展到封闭亚历山大罗夫空间,并讨论了它们的 cat 和 dcat indimension 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributional Lusternik-Schnirelmann category of manifolds
We obtain several sufficient conditions for the distributional LS-category (dcat) of closed manifolds to be maximum, i.e., equal to their classical LS-category (cat). This gives us many new computations of dcat, especially for essential manifolds and (generalized) connected sums. In the process, we also determine the dcat of closed 3-manifolds having torsion-free fundamental groups and some closed geometrically decomposable 4-manifolds. Finally, we extend some of our results to closed Alexandrov spaces and discuss their cat and dcat in dimension 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信