确定某些度数中的第五星形代数转移

Nguyen Sum
{"title":"确定某些度数中的第五星形代数转移","authors":"Nguyen Sum","doi":"arxiv-2408.15120","DOIUrl":null,"url":null,"abstract":"Let $P_k$ be the graded polynomial algebra $\\mathbb F_2[x_1,x_2,\\ldots ,x_k]$\nover the prime field $\\mathbb F_2$ with two elements and the degree of each\nvariable $x_i$ being 1, and let $GL_k$ be the general linear group over\n$\\mathbb F_2$ which acts on $P_k$ as the usual manner. The algebra $P_k$ is\nconsidered as a module over the mod-2 Steenrod algebra $\\mathcal A$. In 1989,\nSinger [22] defined the $k$-th homological algebraic transfer, which is a\nhomomorphism $$\\varphi_k :{\\rm Tor}^{\\mathcal A}_{k,k+d} (\\mathbb F_2,\\mathbb\nF_2) \\to (\\mathbb F_2\\otimes_{\\mathcal A}P_k)_d^{GL_k}$$ from the homological\ngroup of the mod-2 Steenrod algebra $\\mbox{Tor}^{\\mathcal A}_{k,k+d} (\\mathbb\nF_2,\\mathbb F_2)$ to the subspace $(\\mathbb F_2\\otimes_{\\mathcal\nA}P_k)_d^{GL_k}$ of $\\mathbb F_2{\\otimes}_{\\mathcal A}P_k$ consisting of all\nthe $GL_k$-invariant classes of degree $d$. In this paper, by using the results of the Peterson hit problem we present\nthe proof of the fact that the Singer algebraic transfer of rank five is an\nisomorphism in the internal degrees $d= 20$ and $d = 30$. Our result refutes\nthe proof for the case of $d=20$ in Ph\\'uc [17].","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of the fifth Singer algebraic transfer in some degrees\",\"authors\":\"Nguyen Sum\",\"doi\":\"arxiv-2408.15120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $P_k$ be the graded polynomial algebra $\\\\mathbb F_2[x_1,x_2,\\\\ldots ,x_k]$\\nover the prime field $\\\\mathbb F_2$ with two elements and the degree of each\\nvariable $x_i$ being 1, and let $GL_k$ be the general linear group over\\n$\\\\mathbb F_2$ which acts on $P_k$ as the usual manner. The algebra $P_k$ is\\nconsidered as a module over the mod-2 Steenrod algebra $\\\\mathcal A$. In 1989,\\nSinger [22] defined the $k$-th homological algebraic transfer, which is a\\nhomomorphism $$\\\\varphi_k :{\\\\rm Tor}^{\\\\mathcal A}_{k,k+d} (\\\\mathbb F_2,\\\\mathbb\\nF_2) \\\\to (\\\\mathbb F_2\\\\otimes_{\\\\mathcal A}P_k)_d^{GL_k}$$ from the homological\\ngroup of the mod-2 Steenrod algebra $\\\\mbox{Tor}^{\\\\mathcal A}_{k,k+d} (\\\\mathbb\\nF_2,\\\\mathbb F_2)$ to the subspace $(\\\\mathbb F_2\\\\otimes_{\\\\mathcal\\nA}P_k)_d^{GL_k}$ of $\\\\mathbb F_2{\\\\otimes}_{\\\\mathcal A}P_k$ consisting of all\\nthe $GL_k$-invariant classes of degree $d$. In this paper, by using the results of the Peterson hit problem we present\\nthe proof of the fact that the Singer algebraic transfer of rank five is an\\nisomorphism in the internal degrees $d= 20$ and $d = 30$. Our result refutes\\nthe proof for the case of $d=20$ in Ph\\\\'uc [17].\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $P_k$ 是素域 $\mathbb F_2$ 上的分级多项式代数 $/mathbbF_2[x_1,x_2,\ldots,x_k]$,它有两个元素,每个变量 $x_i$ 的度数为 1,并设 $GL_k$ 是 $\mathbb F_2$ 上的一般线性群,它以通常的方式作用于 $P_k$。代数 $P_k$ 被视为模 2 Steenrod 代数 $\mathcal A$ 上的一个模块。1989年,辛格[22]定义了$k$-th同调代数转移,它是一个同态 $$\varphi_k :(\mathbb F_2,\mathbbF_2) 到 (\mathbb F_2\otimes_{mathcal A}P_k)_d^{GL_k}$ 从 mod-2 Steenrod 代数 $\mbox{Tor}^{\mathcal A}_{k、k+d} (\mathbbF_2,\mathbb F_2)$ 到 $\mathbb F_2\otimes_{mathcalA}P_k)_d^{GL_k}$ 的子空间 $(\mathbb F_2\otimes_{mathcalA}P_k)_d^{GL_k}$ 由所有度数为 $d$ 的 $GL_k$ 不变类组成。本文利用彼得森命中问题的结果,证明了秩为五的辛格代数转移在内部度数 $d=20$ 和 $d=30$ 中是同构的。我们的结果驳斥了 Ph\'uc [17] 中对 $d=20$ 情况的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the fifth Singer algebraic transfer in some degrees
Let $P_k$ be the graded polynomial algebra $\mathbb F_2[x_1,x_2,\ldots ,x_k]$ over the prime field $\mathbb F_2$ with two elements and the degree of each variable $x_i$ being 1, and let $GL_k$ be the general linear group over $\mathbb F_2$ which acts on $P_k$ as the usual manner. The algebra $P_k$ is considered as a module over the mod-2 Steenrod algebra $\mathcal A$. In 1989, Singer [22] defined the $k$-th homological algebraic transfer, which is a homomorphism $$\varphi_k :{\rm Tor}^{\mathcal A}_{k,k+d} (\mathbb F_2,\mathbb F_2) \to (\mathbb F_2\otimes_{\mathcal A}P_k)_d^{GL_k}$$ from the homological group of the mod-2 Steenrod algebra $\mbox{Tor}^{\mathcal A}_{k,k+d} (\mathbb F_2,\mathbb F_2)$ to the subspace $(\mathbb F_2\otimes_{\mathcal A}P_k)_d^{GL_k}$ of $\mathbb F_2{\otimes}_{\mathcal A}P_k$ consisting of all the $GL_k$-invariant classes of degree $d$. In this paper, by using the results of the Peterson hit problem we present the proof of the fact that the Singer algebraic transfer of rank five is an isomorphism in the internal degrees $d= 20$ and $d = 30$. Our result refutes the proof for the case of $d=20$ in Ph\'uc [17].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信