非分支简单复数上持久拉普拉奇的快速算法

Rui Dong
{"title":"非分支简单复数上持久拉普拉奇的快速算法","authors":"Rui Dong","doi":"arxiv-2408.16741","DOIUrl":null,"url":null,"abstract":"In this paper we present an algorithm for computing the matrix representation\n$\\Delta_{q, \\mathrm{up}}^{K, L}$ of the up persistent Laplacian $\\triangle_{q,\n\\mathrm{up}}^{K, L}$ over a pair of non-branching and orientation-compatible\nsimplicial complexes $K\\hookrightarrow L$, which has quadratic time complexity.\nMoreover, we show that the matrix representation $\\Delta_{q, \\mathrm{up}}^{K,\nL}$ can be identified as the Laplacian of a weighted oriented hypergraph, which\ncan be regarded as a higher dimensional generalization of the Kron reduction.\nFinally, we introduce a Cheeger-type inequality with respect to the minimal\neigenvalue $\\lambda_{\\mathbf{min}}^{K, L}$ of $\\Delta_{q, \\mathrm{up}}^{K, L}$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A faster algorithm of up persistent Laplacian over non-branching simplicial complexes\",\"authors\":\"Rui Dong\",\"doi\":\"arxiv-2408.16741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an algorithm for computing the matrix representation\\n$\\\\Delta_{q, \\\\mathrm{up}}^{K, L}$ of the up persistent Laplacian $\\\\triangle_{q,\\n\\\\mathrm{up}}^{K, L}$ over a pair of non-branching and orientation-compatible\\nsimplicial complexes $K\\\\hookrightarrow L$, which has quadratic time complexity.\\nMoreover, we show that the matrix representation $\\\\Delta_{q, \\\\mathrm{up}}^{K,\\nL}$ can be identified as the Laplacian of a weighted oriented hypergraph, which\\ncan be regarded as a higher dimensional generalization of the Kron reduction.\\nFinally, we introduce a Cheeger-type inequality with respect to the minimal\\neigenvalue $\\\\lambda_{\\\\mathbf{min}}^{K, L}$ of $\\\\Delta_{q, \\\\mathrm{up}}^{K, L}$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种算法,用于计算在一对无分支且方向可兼容的复数 $K\hookrightarrow L$ 上的向上持久性拉普拉奇的矩阵表示 $/三角形_{q, \mathrm{up}}^{K, L}$,该算法具有二次时间复杂性。此外,我们还证明了矩阵表示 $\Delta_{q, \mathrm{up}}^{K,L}$ 可以被识别为加权定向超图的拉普拉奇,这可以被视为克朗还原的高维广义化。最后,我们引入了一个关于 $\Delta_{q, \mathrm{up}}^{K, L}$ 的最小特征值 $\lambda_{mathbf{min}}^{K, L}$ 的切格型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A faster algorithm of up persistent Laplacian over non-branching simplicial complexes
In this paper we present an algorithm for computing the matrix representation $\Delta_{q, \mathrm{up}}^{K, L}$ of the up persistent Laplacian $\triangle_{q, \mathrm{up}}^{K, L}$ over a pair of non-branching and orientation-compatible simplicial complexes $K\hookrightarrow L$, which has quadratic time complexity. Moreover, we show that the matrix representation $\Delta_{q, \mathrm{up}}^{K, L}$ can be identified as the Laplacian of a weighted oriented hypergraph, which can be regarded as a higher dimensional generalization of the Kron reduction. Finally, we introduce a Cheeger-type inequality with respect to the minimal eigenvalue $\lambda_{\mathbf{min}}^{K, L}$ of $\Delta_{q, \mathrm{up}}^{K, L}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信