$\mathcal{A}(2)$ 上的对称 A 作用

Robert R. Bruner
{"title":"$\\mathcal{A}(2)$ 上的对称 A 作用","authors":"Robert R. Bruner","doi":"arxiv-2408.16980","DOIUrl":null,"url":null,"abstract":"We describe the variety of `symmetric' left actions of the mod 2 Steenrod\nalgebra $\\mathcal{A}$ on its subalgebra $\\mathcal{A}(2)$. These arise as the\ncohomology of $\\text{v}_2$ self maps $\\Sigma^7 Z \\longrightarrow Z$, as in\narXiv:1608.06250 [math.AT]. There are $256$ $\\mathbb{F}_2$ points in this\nvariety, arising from $16$ such actions of $Sq^8$ and, for each such, $16$\nactions of $Sq^{16}$. We describe in similar fashion the 1600 $\\mathcal{A}$\nactions on $\\mathcal{A}(2)$ found by Roth(1977) and the inclusion of the\nvariety of symmetric actions into the variety of all actions. We also describe\ntwo related varieties of $\\mathcal{A}$ actions, the maps between these and the\nbehavior of Spanier-Whitehead duality on these varieties. Finally, we note that\nthe actions which have been used in the literature correspond to the simplest\nchoices, in which all the coordinates equal zero.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric A actions on $\\\\mathcal{A}(2)$\",\"authors\":\"Robert R. Bruner\",\"doi\":\"arxiv-2408.16980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the variety of `symmetric' left actions of the mod 2 Steenrod\\nalgebra $\\\\mathcal{A}$ on its subalgebra $\\\\mathcal{A}(2)$. These arise as the\\ncohomology of $\\\\text{v}_2$ self maps $\\\\Sigma^7 Z \\\\longrightarrow Z$, as in\\narXiv:1608.06250 [math.AT]. There are $256$ $\\\\mathbb{F}_2$ points in this\\nvariety, arising from $16$ such actions of $Sq^8$ and, for each such, $16$\\nactions of $Sq^{16}$. We describe in similar fashion the 1600 $\\\\mathcal{A}$\\nactions on $\\\\mathcal{A}(2)$ found by Roth(1977) and the inclusion of the\\nvariety of symmetric actions into the variety of all actions. We also describe\\ntwo related varieties of $\\\\mathcal{A}$ actions, the maps between these and the\\nbehavior of Spanier-Whitehead duality on these varieties. Finally, we note that\\nthe actions which have been used in the literature correspond to the simplest\\nchoices, in which all the coordinates equal zero.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了模 2 Steenrodalgebra $\mathcal{A}$ 在其子代数 $\mathcal{A}(2)$ 上的各种 "对称 "左作用。这些作为 $\text{v}_2$ 自映射 $\Sigma^7 Z \longrightarrow Z$ 的同调出现,如 inarXiv:1608.06250 [math.AT] 所示。在这个变量中有 $256$ $\mathbb{F}_2$点,产生于 $Sq^8$ 的 $16$ 这样的作用,以及对于每个这样的点,$Sq^{16}$ 的 $16$ 作用。我们以类似的方式描述了罗思(1977)在 $\mathcal{A}(2)$上发现的 1600 个 $\mathcal{A}$作用,以及将对称作用的种类纳入所有作用的种类。我们还描述了 $\mathcal{A}$ 动作的两个相关种类、它们之间的映射以及斯潘尼-怀特海对偶性在这些种类上的行为。最后,我们注意到文献中使用的动作对应于最简单的选择,即所有坐标都等于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric A actions on $\mathcal{A}(2)$
We describe the variety of `symmetric' left actions of the mod 2 Steenrod algebra $\mathcal{A}$ on its subalgebra $\mathcal{A}(2)$. These arise as the cohomology of $\text{v}_2$ self maps $\Sigma^7 Z \longrightarrow Z$, as in arXiv:1608.06250 [math.AT]. There are $256$ $\mathbb{F}_2$ points in this variety, arising from $16$ such actions of $Sq^8$ and, for each such, $16$ actions of $Sq^{16}$. We describe in similar fashion the 1600 $\mathcal{A}$ actions on $\mathcal{A}(2)$ found by Roth(1977) and the inclusion of the variety of symmetric actions into the variety of all actions. We also describe two related varieties of $\mathcal{A}$ actions, the maps between these and the behavior of Spanier-Whitehead duality on these varieties. Finally, we note that the actions which have been used in the literature correspond to the simplest choices, in which all the coordinates equal zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信