拓扑度作为不纠缠的离散诊断,并应用于 $Δ$VAE

Mahefa Ratsisetraina Ravelonanosy, Vlado Menkovski, Jacobus W. Portegies
{"title":"拓扑度作为不纠缠的离散诊断,并应用于 $Δ$VAE","authors":"Mahefa Ratsisetraina Ravelonanosy, Vlado Menkovski, Jacobus W. Portegies","doi":"arxiv-2409.01303","DOIUrl":null,"url":null,"abstract":"We investigate the ability of Diffusion Variational Autoencoder ($\\Delta$VAE)\nwith unit sphere $\\mathcal{S}^2$ as latent space to capture topological and\ngeometrical structure and disentangle latent factors in datasets. For this, we\nintroduce a new diagnostic of disentanglement: namely the topological degree of\nthe encoder, which is a map from the data manifold to the latent space. By\nusing tools from homology theory, we derive and implement an algorithm that\ncomputes this degree. We use the algorithm to compute the degree of the encoder\nof models that result from the training procedure. Our experimental results\nshow that the $\\Delta$VAE achieves relatively small LSBD scores, and that\nregardless of the degree after initialization, the degree of the encoder after\ntraining becomes $-1$ or $+1$, which implies that the resulting encoder is at\nleast homotopic to a homeomorphism.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological degree as a discrete diagnostic for disentanglement, with applications to the $Δ$VAE\",\"authors\":\"Mahefa Ratsisetraina Ravelonanosy, Vlado Menkovski, Jacobus W. Portegies\",\"doi\":\"arxiv-2409.01303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the ability of Diffusion Variational Autoencoder ($\\\\Delta$VAE)\\nwith unit sphere $\\\\mathcal{S}^2$ as latent space to capture topological and\\ngeometrical structure and disentangle latent factors in datasets. For this, we\\nintroduce a new diagnostic of disentanglement: namely the topological degree of\\nthe encoder, which is a map from the data manifold to the latent space. By\\nusing tools from homology theory, we derive and implement an algorithm that\\ncomputes this degree. We use the algorithm to compute the degree of the encoder\\nof models that result from the training procedure. Our experimental results\\nshow that the $\\\\Delta$VAE achieves relatively small LSBD scores, and that\\nregardless of the degree after initialization, the degree of the encoder after\\ntraining becomes $-1$ or $+1$, which implies that the resulting encoder is at\\nleast homotopic to a homeomorphism.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以单位球$\mathcal{S}^2$为潜在空间的扩散变异自动编码器($\Delta$VAE)捕捉数据集中的拓扑和几何结构以及分解潜在因素的能力。为此,我们引入了一种新的解缠诊断方法:即编码器的拓扑度,它是从数据流形到潜空间的映射。通过使用同调理论的工具,我们推导并实现了一种计算该度的算法。我们使用该算法计算训练过程中产生的模型的编码器度。我们的实验结果表明,$\Delta$VAE 可以获得相对较小的 LSBD 分数,而且无论初始化后的度数是多少,训练后编码器的度数都会变成 $-1$ 或 $+1$,这意味着所得到的编码器至少与同构同向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological degree as a discrete diagnostic for disentanglement, with applications to the $Δ$VAE
We investigate the ability of Diffusion Variational Autoencoder ($\Delta$VAE) with unit sphere $\mathcal{S}^2$ as latent space to capture topological and geometrical structure and disentangle latent factors in datasets. For this, we introduce a new diagnostic of disentanglement: namely the topological degree of the encoder, which is a map from the data manifold to the latent space. By using tools from homology theory, we derive and implement an algorithm that computes this degree. We use the algorithm to compute the degree of the encoder of models that result from the training procedure. Our experimental results show that the $\Delta$VAE achieves relatively small LSBD scores, and that regardless of the degree after initialization, the degree of the encoder after training becomes $-1$ or $+1$, which implies that the resulting encoder is at least homotopic to a homeomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信