Spin(7) 和 Spin(8) 列群同调类的几何表示

Eiolf Kaspersen, Gereon Quick
{"title":"Spin(7) 和 Spin(8) 列群同调类的几何表示","authors":"Eiolf Kaspersen, Gereon Quick","doi":"arxiv-2409.06491","DOIUrl":null,"url":null,"abstract":"By constructing concrete complex-oriented maps we show that the eight-fold of\nthe generator of the third integral cohomology of the spin groups Spin(7) and\nSpin(8) is in the image of the Thom morphism from complex cobordism to singular\ncohomology, while the generator itself is not in the image. We thereby give a\ngeometric construction for a nontrivial class in the kernel of the differential\nThom morphism of Hopkins and Singer for the Lie groups Spin(7) and Spin(8). The\nconstruction exploits the special symmetries of the octonions.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)\",\"authors\":\"Eiolf Kaspersen, Gereon Quick\",\"doi\":\"arxiv-2409.06491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By constructing concrete complex-oriented maps we show that the eight-fold of\\nthe generator of the third integral cohomology of the spin groups Spin(7) and\\nSpin(8) is in the image of the Thom morphism from complex cobordism to singular\\ncohomology, while the generator itself is not in the image. We thereby give a\\ngeometric construction for a nontrivial class in the kernel of the differential\\nThom morphism of Hopkins and Singer for the Lie groups Spin(7) and Spin(8). The\\nconstruction exploits the special symmetries of the octonions.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过构建具体的面向复数的映射,我们证明了自旋群 Spin(7) 和 Spin(8) 的第三积分同调的生成器的八叠层在从复数共线性到奇异同调的 Thom 形态的映像中,而生成器本身不在映像中。因此,我们给出了霍普金斯(Hopkins)和辛格(Singer)针对 Lie 群 Spin(7) 和 Spin(8) 的微分托姆态内核中一个非小类的年龄计量构造。该构造利用了八元数的特殊对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)
By constructing concrete complex-oriented maps we show that the eight-fold of the generator of the third integral cohomology of the spin groups Spin(7) and Spin(8) is in the image of the Thom morphism from complex cobordism to singular cohomology, while the generator itself is not in the image. We thereby give a geometric construction for a nontrivial class in the kernel of the differential Thom morphism of Hopkins and Singer for the Lie groups Spin(7) and Spin(8). The construction exploits the special symmetries of the octonions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信