磁铁矿纳米颗粒的合成、评估及在正常细胞和癌细胞中的生物相容性研究在医疗保健中的应用

IF 5.45 Q1 Physics and Astronomy
Shreya Chatterjee, Ankita Das, Amrita Das, Riya Roy, Poulomi Roy, Pallab Datta, Sabu Thomas, Kajal Ghosal
{"title":"磁铁矿纳米颗粒的合成、评估及在正常细胞和癌细胞中的生物相容性研究在医疗保健中的应用","authors":"Shreya Chatterjee, Ankita Das, Amrita Das, Riya Roy, Poulomi Roy, Pallab Datta, Sabu Thomas, Kajal Ghosal","doi":"10.1016/j.nanoso.2024.101313","DOIUrl":null,"url":null,"abstract":"Magnetic nanoparticles have been synthesized in a very simple and economical way by the co-precipitation method, where the effect of molar concentrations of ferric chloride anhydrous (FeCl) and iron (II) sulphate heptahydrate (FeSO.7 H0) on magnetite synthesis has been investigated. Also, a detailed study was conducted to study the effect of magnetite and hematite on both normal and cancerous cell lines. After this, the magnetic nanoparticles obtained were analyzed by x-ray Diffraction (XRD), scanning electron microscope (SEM) - energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometer (VSM), atomic force microscopy AFM), MTT test, and cell apoptotic assay. The XRD peaks for magnetite were easily discernible in the final formulation. SEM images showed round particles in nano ranges, and FTIR peaks showed the presence of magnetite. Zeta potential showed surface charges. VSM showed the magnetic property of magnetite, and AFM confirmed SEM images. It can be concluded that magnetic nanoparticles were synthesized by the co-precipitation method using an optimized molar concentration of reagents. Also, the necessity of coating uncoated magnetic nanoparticles can be seen from the MTT assay. Cell apoptotic assays have shown that synthesized magnetite nanoparticles have shown potential apoptotic activity on cancer cell lines.","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"1 1","pages":""},"PeriodicalIF":5.4500,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, evaluation, and biocompatibility study of magnetite nano particles in normal cells and cancer cells for health care application\",\"authors\":\"Shreya Chatterjee, Ankita Das, Amrita Das, Riya Roy, Poulomi Roy, Pallab Datta, Sabu Thomas, Kajal Ghosal\",\"doi\":\"10.1016/j.nanoso.2024.101313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic nanoparticles have been synthesized in a very simple and economical way by the co-precipitation method, where the effect of molar concentrations of ferric chloride anhydrous (FeCl) and iron (II) sulphate heptahydrate (FeSO.7 H0) on magnetite synthesis has been investigated. Also, a detailed study was conducted to study the effect of magnetite and hematite on both normal and cancerous cell lines. After this, the magnetic nanoparticles obtained were analyzed by x-ray Diffraction (XRD), scanning electron microscope (SEM) - energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometer (VSM), atomic force microscopy AFM), MTT test, and cell apoptotic assay. The XRD peaks for magnetite were easily discernible in the final formulation. SEM images showed round particles in nano ranges, and FTIR peaks showed the presence of magnetite. Zeta potential showed surface charges. VSM showed the magnetic property of magnetite, and AFM confirmed SEM images. It can be concluded that magnetic nanoparticles were synthesized by the co-precipitation method using an optimized molar concentration of reagents. Also, the necessity of coating uncoated magnetic nanoparticles can be seen from the MTT assay. Cell apoptotic assays have shown that synthesized magnetite nanoparticles have shown potential apoptotic activity on cancer cell lines.\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoso.2024.101313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.nanoso.2024.101313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

通过共沉淀法以非常简单和经济的方式合成了磁性纳米粒子,研究了无水氯化铁(FeCl)和七水硫酸铁(FeSO.7 H0)的摩尔浓度对磁铁矿合成的影响。此外,还详细研究了磁铁矿和赤铁矿对正常细胞系和癌细胞系的影响。随后,通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) - 能量色散 X 射线 (EDX)、傅立叶变换红外光谱 (FTIR)、ZETA 电位、振动样品磁力计 (VSM)、原子力显微镜 (AFM)、MTT 试验和细胞凋亡检测对获得的磁性纳米粒子进行了分析。在最终配方中很容易辨别出磁铁矿的 XRD 峰。扫描电子显微镜图像显示出纳米级的圆形颗粒,傅立叶变换红外光谱峰显示出磁铁矿的存在。Zeta 电位显示了表面电荷。VSM 显示了磁铁矿的磁性,原子力显微镜证实了扫描电镜图像。由此可以得出结论,磁性纳米粒子是通过共沉淀法使用优化的试剂摩尔浓度合成的。此外,从 MTT 试验中也可以看出对未涂层的磁性纳米粒子进行涂层的必要性。细胞凋亡试验表明,合成的磁铁矿纳米粒子对癌细胞株具有潜在的凋亡活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, evaluation, and biocompatibility study of magnetite nano particles in normal cells and cancer cells for health care application
Magnetic nanoparticles have been synthesized in a very simple and economical way by the co-precipitation method, where the effect of molar concentrations of ferric chloride anhydrous (FeCl) and iron (II) sulphate heptahydrate (FeSO.7 H0) on magnetite synthesis has been investigated. Also, a detailed study was conducted to study the effect of magnetite and hematite on both normal and cancerous cell lines. After this, the magnetic nanoparticles obtained were analyzed by x-ray Diffraction (XRD), scanning electron microscope (SEM) - energy dispersive x-ray (EDX), Fourier transform infrared spectroscopy (FTIR), zeta potential, vibrating sample magnetometer (VSM), atomic force microscopy AFM), MTT test, and cell apoptotic assay. The XRD peaks for magnetite were easily discernible in the final formulation. SEM images showed round particles in nano ranges, and FTIR peaks showed the presence of magnetite. Zeta potential showed surface charges. VSM showed the magnetic property of magnetite, and AFM confirmed SEM images. It can be concluded that magnetic nanoparticles were synthesized by the co-precipitation method using an optimized molar concentration of reagents. Also, the necessity of coating uncoated magnetic nanoparticles can be seen from the MTT assay. Cell apoptotic assays have shown that synthesized magnetite nanoparticles have shown potential apoptotic activity on cancer cell lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信