含有多壁碳纳米管的无定形和半结晶聚乳酸混合物的性能

Mojtaba Mohammadi, Mohammadreza Nofar, Pierre J. Carreau
{"title":"含有多壁碳纳米管的无定形和半结晶聚乳酸混合物的性能","authors":"Mojtaba Mohammadi, Mohammadreza Nofar, Pierre J. Carreau","doi":"10.1002/cjce.25463","DOIUrl":null,"url":null,"abstract":"Blend nanocomposites of amorphous polylactide (aPLA) and semicrystalline PLA (scPLA)‐multiwalled carbon nanotubes (MWCNTs) were prepared by a twin‐screw extruder below the melting temperature of the scPLA. The maximum weight percent of MWCNTs in the blends was 0.9 wt.%. The extrudates were either pelletized immediately or after drawing at a drawing ratio of about 10. According to small amplitude oscillatory shear rheological analysis, the rheological properties of the aPLA/scPLA (85/15 wt.%) drawn sample were significantly increased compared to the undrawn samples. With the presence of MWCNTs, more crystallites could develop in the scPLA, and the electrical conductivity of the aPLA/scPLA nanocomposites was reduced due to the encapsulation of MWCNTs within the crystallites of scPLA. Increasing the temperature during compression moulding to 190°C, which is above the melting temperature of the scPLA, effectively removed this obstacle and the electrical conductivity was increased by a factor of up to 10<jats:sup>6</jats:sup> compared to the samples moulded at 150°C.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of blends of amorphous and semicrystalline PLAs containing multiwalled carbon nanotubes\",\"authors\":\"Mojtaba Mohammadi, Mohammadreza Nofar, Pierre J. Carreau\",\"doi\":\"10.1002/cjce.25463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blend nanocomposites of amorphous polylactide (aPLA) and semicrystalline PLA (scPLA)‐multiwalled carbon nanotubes (MWCNTs) were prepared by a twin‐screw extruder below the melting temperature of the scPLA. The maximum weight percent of MWCNTs in the blends was 0.9 wt.%. The extrudates were either pelletized immediately or after drawing at a drawing ratio of about 10. According to small amplitude oscillatory shear rheological analysis, the rheological properties of the aPLA/scPLA (85/15 wt.%) drawn sample were significantly increased compared to the undrawn samples. With the presence of MWCNTs, more crystallites could develop in the scPLA, and the electrical conductivity of the aPLA/scPLA nanocomposites was reduced due to the encapsulation of MWCNTs within the crystallites of scPLA. Increasing the temperature during compression moulding to 190°C, which is above the melting temperature of the scPLA, effectively removed this obstacle and the electrical conductivity was increased by a factor of up to 10<jats:sup>6</jats:sup> compared to the samples moulded at 150°C.\",\"PeriodicalId\":501204,\"journal\":{\"name\":\"The Canadian Journal of Chemical Engineering\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cjce.25463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过双螺杆挤压机在低于半结晶聚乳酸(scPLA)熔化温度的条件下制备了无定形聚乳酸(aPLA)和半结晶聚乳酸(scPLA)-多壁碳纳米管(MWCNTs)的共混纳米复合材料。混合物中 MWCNTs 的最大重量百分比为 0.9 wt.%。挤出物或立即造粒,或在拉丝后以约 10 的拉丝比造粒。根据小振幅振荡剪切流变分析,与未拉丝样品相比,拉丝 aPLA/scPLA (85/15 wt.%)样品的流变特性显著提高。由于 MWCNTs 的存在,scPLA 中可以形成更多的结晶,并且由于 MWCNTs 被包裹在 scPLA 的结晶中,aPLA/scPLA 纳米复合材料的导电性降低。将压缩模塑过程中的温度提高到 190°C(高于 scPLA 的熔化温度)可有效消除这一障碍,与在 150°C 下模塑的样品相比,导电性提高了 106 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of blends of amorphous and semicrystalline PLAs containing multiwalled carbon nanotubes
Blend nanocomposites of amorphous polylactide (aPLA) and semicrystalline PLA (scPLA)‐multiwalled carbon nanotubes (MWCNTs) were prepared by a twin‐screw extruder below the melting temperature of the scPLA. The maximum weight percent of MWCNTs in the blends was 0.9 wt.%. The extrudates were either pelletized immediately or after drawing at a drawing ratio of about 10. According to small amplitude oscillatory shear rheological analysis, the rheological properties of the aPLA/scPLA (85/15 wt.%) drawn sample were significantly increased compared to the undrawn samples. With the presence of MWCNTs, more crystallites could develop in the scPLA, and the electrical conductivity of the aPLA/scPLA nanocomposites was reduced due to the encapsulation of MWCNTs within the crystallites of scPLA. Increasing the temperature during compression moulding to 190°C, which is above the melting temperature of the scPLA, effectively removed this obstacle and the electrical conductivity was increased by a factor of up to 106 compared to the samples moulded at 150°C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信