多集拓扑空间背景下的可数性研究

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Satabdi Ray, Baby Bhattacharya
{"title":"多集拓扑空间背景下的可数性研究","authors":"Satabdi Ray, Baby Bhattacharya","doi":"10.1007/s40010-024-00893-9","DOIUrl":null,"url":null,"abstract":"<p>The main aim of this treatise is to establish the conception of sequence of multiset and countability on multiset topological spaces. Unlike any topological space, there are two subspaces in this context which are also countable M-topological space. Also, we obtained the relationship of the variants of countable M-topological spaces in the light of sequences in this environment.</p>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Countability in the Context of Multiset Topological Spaces\",\"authors\":\"Satabdi Ray, Baby Bhattacharya\",\"doi\":\"10.1007/s40010-024-00893-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main aim of this treatise is to establish the conception of sequence of multiset and countability on multiset topological spaces. Unlike any topological space, there are two subspaces in this context which are also countable M-topological space. Also, we obtained the relationship of the variants of countable M-topological spaces in the light of sequences in this environment.</p>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s40010-024-00893-9\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s40010-024-00893-9","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本论文的主要目的是在多集拓扑空间上建立多集序列和可数性的概念。与任何拓扑空间不同,这里有两个子空间也是可数 M 拓扑空间。此外,我们还根据该环境中的序列,得到了可数 M 拓扑空间变体的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Countability in the Context of Multiset Topological Spaces

The main aim of this treatise is to establish the conception of sequence of multiset and countability on multiset topological spaces. Unlike any topological space, there are two subspaces in this context which are also countable M-topological space. Also, we obtained the relationship of the variants of countable M-topological spaces in the light of sequences in this environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信