{"title":"剪切跨深比对使用 BFRP 杆件加固的高强度混凝土梁剪切强度的影响","authors":"Jaza Hassan Muhammad, Sarwar H. Mohmmad","doi":"10.1007/s40996-024-01588-2","DOIUrl":null,"url":null,"abstract":"<p>An experiment was conducted to investigate the influence of the shear span-to-depth ratio (a/d) on the shear capacity and behavior of high-strength concrete (HSC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Six BFRP reinforced HSC beams, concrete compressive strength<span>\\({(f}_{c}^{\\prime}\\)</span>) equal to 90.67 MPa, were cast and tested in a four-point bending arrangement. The shear span-to-depth ratios ranged from 1.5 to 4. The results indicated that the shear span-to-depth ratio, remarkably, affects the shear capacity and behavior of HSC deep beams reinforced with BFRP bars. Due to the increase in the shear span-to-depth ratio from 1.5 to 2.5, the shear capacity of BFRP-reinforced HSC deep beams decreased by 51.78%; however, an insignificant effect was observed in HSC slender beams reinforced with BFRP bars. Additionally, the applicability of models from different design codes to predict the shear strength of FRP-reinforced concrete beams was investigated. The strut coefficients from ACI 318-19 were modified to predict more accurate results from strut and tie models. The ratio of the experimental to predicted ultimate shear strength of the beams with the modified strut-and-tie model from ACI 318-19 (<span>\\({V}_{u,exp}/{V}_{propse } )\\)</span> had a mean value of 1.02 and a coefficient of variation (CV) of 15.03%.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"85 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Shear Span-to-Depth Ratio on Shear Strength of High-Strength Concrete Beams Reinforced with BFRP Bars\",\"authors\":\"Jaza Hassan Muhammad, Sarwar H. Mohmmad\",\"doi\":\"10.1007/s40996-024-01588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An experiment was conducted to investigate the influence of the shear span-to-depth ratio (a/d) on the shear capacity and behavior of high-strength concrete (HSC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Six BFRP reinforced HSC beams, concrete compressive strength<span>\\\\({(f}_{c}^{\\\\prime}\\\\)</span>) equal to 90.67 MPa, were cast and tested in a four-point bending arrangement. The shear span-to-depth ratios ranged from 1.5 to 4. The results indicated that the shear span-to-depth ratio, remarkably, affects the shear capacity and behavior of HSC deep beams reinforced with BFRP bars. Due to the increase in the shear span-to-depth ratio from 1.5 to 2.5, the shear capacity of BFRP-reinforced HSC deep beams decreased by 51.78%; however, an insignificant effect was observed in HSC slender beams reinforced with BFRP bars. Additionally, the applicability of models from different design codes to predict the shear strength of FRP-reinforced concrete beams was investigated. The strut coefficients from ACI 318-19 were modified to predict more accurate results from strut and tie models. The ratio of the experimental to predicted ultimate shear strength of the beams with the modified strut-and-tie model from ACI 318-19 (<span>\\\\({V}_{u,exp}/{V}_{propse } )\\\\)</span> had a mean value of 1.02 and a coefficient of variation (CV) of 15.03%.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01588-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01588-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effect of Shear Span-to-Depth Ratio on Shear Strength of High-Strength Concrete Beams Reinforced with BFRP Bars
An experiment was conducted to investigate the influence of the shear span-to-depth ratio (a/d) on the shear capacity and behavior of high-strength concrete (HSC) beams reinforced with basalt fiber-reinforced polymer (BFRP) bars. Six BFRP reinforced HSC beams, concrete compressive strength\({(f}_{c}^{\prime}\)) equal to 90.67 MPa, were cast and tested in a four-point bending arrangement. The shear span-to-depth ratios ranged from 1.5 to 4. The results indicated that the shear span-to-depth ratio, remarkably, affects the shear capacity and behavior of HSC deep beams reinforced with BFRP bars. Due to the increase in the shear span-to-depth ratio from 1.5 to 2.5, the shear capacity of BFRP-reinforced HSC deep beams decreased by 51.78%; however, an insignificant effect was observed in HSC slender beams reinforced with BFRP bars. Additionally, the applicability of models from different design codes to predict the shear strength of FRP-reinforced concrete beams was investigated. The strut coefficients from ACI 318-19 were modified to predict more accurate results from strut and tie models. The ratio of the experimental to predicted ultimate shear strength of the beams with the modified strut-and-tie model from ACI 318-19 (\({V}_{u,exp}/{V}_{propse } )\) had a mean value of 1.02 and a coefficient of variation (CV) of 15.03%.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.