{"title":"利用涂覆在棉织物上的花状氧化锌纳米结构的集湿功效","authors":"M. Mardani, G. R. Rakhshandehroo, M. M. Zerafat","doi":"10.1007/s40996-024-01584-6","DOIUrl":null,"url":null,"abstract":"<p>Nanocomposite fabrics have been extensively employed as moisture harvesting media. In this study, flower-like zinc oxide nanostructures were coated on cotton fabrics by precipitation technique at different operational conditions of precursor concentration, temperature, and residence time. Then, the impact of aforementioned parameters on wettability of coated fabrics and morphology of nanostructures were investigated through water contact angle (WCA) measurements and SEM/EDX analyses, respectively. Optimal conditions of the coating procedure was experimentally determined and later validated using Minitab software. Afterwards, the fabrics prepared at optimal conditions were utilized in moisture harvesting experiments which were planned to scrutinize the effects of 3 parameters; humid airflow rate, temperature, and humidity on the final amount of harvested moisture. Experimental results in terms of WCA measurements led to an optimal value of 156°. Moreover, Minitab confirmation of the obtained results revealed that the optimization of coating process occurred at a precursor concentration of 3.1 mM, a temperature of 85 °C, and a residence time of 50 min. Furthermore, SEM/EDX analyses ascertain the flower-like zinc oxide nanostructure coating as well as its uniform distribution on the fabric surface. The abrasion resistance of the coated nanostructure was evaluated via performing a standard abrasion test proving the coating mechanical stability, as evidenced by a negligible reduction in the WCA. Finally, optimal moisture harvesting results led to 64.8 mg/cm<sup>2</sup>.h of water, showing the dominancy of air humidity effect on the amount of harvested moisture as compared to factors such as temperature and air flowrate.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"64 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture Harvesting Efficacy Utilizing Flower-Like ZnO Nanostructures Coated on Cotton Fabrics\",\"authors\":\"M. Mardani, G. R. Rakhshandehroo, M. M. Zerafat\",\"doi\":\"10.1007/s40996-024-01584-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanocomposite fabrics have been extensively employed as moisture harvesting media. In this study, flower-like zinc oxide nanostructures were coated on cotton fabrics by precipitation technique at different operational conditions of precursor concentration, temperature, and residence time. Then, the impact of aforementioned parameters on wettability of coated fabrics and morphology of nanostructures were investigated through water contact angle (WCA) measurements and SEM/EDX analyses, respectively. Optimal conditions of the coating procedure was experimentally determined and later validated using Minitab software. Afterwards, the fabrics prepared at optimal conditions were utilized in moisture harvesting experiments which were planned to scrutinize the effects of 3 parameters; humid airflow rate, temperature, and humidity on the final amount of harvested moisture. Experimental results in terms of WCA measurements led to an optimal value of 156°. Moreover, Minitab confirmation of the obtained results revealed that the optimization of coating process occurred at a precursor concentration of 3.1 mM, a temperature of 85 °C, and a residence time of 50 min. Furthermore, SEM/EDX analyses ascertain the flower-like zinc oxide nanostructure coating as well as its uniform distribution on the fabric surface. The abrasion resistance of the coated nanostructure was evaluated via performing a standard abrasion test proving the coating mechanical stability, as evidenced by a negligible reduction in the WCA. Finally, optimal moisture harvesting results led to 64.8 mg/cm<sup>2</sup>.h of water, showing the dominancy of air humidity effect on the amount of harvested moisture as compared to factors such as temperature and air flowrate.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01584-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01584-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Nanocomposite fabrics have been extensively employed as moisture harvesting media. In this study, flower-like zinc oxide nanostructures were coated on cotton fabrics by precipitation technique at different operational conditions of precursor concentration, temperature, and residence time. Then, the impact of aforementioned parameters on wettability of coated fabrics and morphology of nanostructures were investigated through water contact angle (WCA) measurements and SEM/EDX analyses, respectively. Optimal conditions of the coating procedure was experimentally determined and later validated using Minitab software. Afterwards, the fabrics prepared at optimal conditions were utilized in moisture harvesting experiments which were planned to scrutinize the effects of 3 parameters; humid airflow rate, temperature, and humidity on the final amount of harvested moisture. Experimental results in terms of WCA measurements led to an optimal value of 156°. Moreover, Minitab confirmation of the obtained results revealed that the optimization of coating process occurred at a precursor concentration of 3.1 mM, a temperature of 85 °C, and a residence time of 50 min. Furthermore, SEM/EDX analyses ascertain the flower-like zinc oxide nanostructure coating as well as its uniform distribution on the fabric surface. The abrasion resistance of the coated nanostructure was evaluated via performing a standard abrasion test proving the coating mechanical stability, as evidenced by a negligible reduction in the WCA. Finally, optimal moisture harvesting results led to 64.8 mg/cm2.h of water, showing the dominancy of air humidity effect on the amount of harvested moisture as compared to factors such as temperature and air flowrate.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.