具有窄网格和浮动 P 区的双注入增强型超级结 TIGBT

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinping Zhang, Mengxiao Li, Yunxiang Huang, Bing Xiao, Bo Zhang
{"title":"具有窄网格和浮动 P 区的双注入增强型超级结 TIGBT","authors":"Jinping Zhang,&nbsp;Mengxiao Li,&nbsp;Yunxiang Huang,&nbsp;Bing Xiao,&nbsp;Bo Zhang","doi":"10.1007/s10825-024-02218-w","DOIUrl":null,"url":null,"abstract":"<div><p>For the conventional super junction trench insulated gate bipolar transistor (SJ-TIGBT), the higher the N/P column doping concentration (<i>N</i><sub>c</sub>), the better the electrical characteristics can be obtained. However, considering the negative impact of charge imbalance of the N/P column on the breakdown voltage (<i>BV</i>), the value of <i>N</i><sub>c</sub> is limited, which limits the improvement of device performances. In this paper, a novel SJ-TIGBT with narrow mesa (NM) and floating-P (FP) region (NMFP-SJ-TIGBT) is proposed. The electrical characteristics of the proposed SJ-TIGBT are significantly enhanced owing to the dual injection enhancement effect provided by the NM and FP region. Moreover, for the proposed SJ device, the excellent performance obtained in the lower <i>N</i><sub>c</sub> regime alleviates the negative impact of charge imbalance of N/P column on the <i>BV</i>, which greatly improves its fabrication process tolerance. The simulation results show that compared to the conventional SJ-TIGBT (SJ-TIGBT-A), a SJ-TIGBT with an n-injector layer (SJ-TIGBT-B) and a SJ-TIGBT with a floating-P column under the gate (SJ-TIGBT-C), the proposed structure demonstrates a significantly lower and almost constant on-state voltage drop (<i>V</i><sub>ceon</sub>). At a collector current density of 100 A/cm<sup>2</sup> and <i>N</i><sub>c</sub> of 1 × 10<sup>15</sup> cm<sup>−3</sup>, the <i>V</i><sub>ceon</sub> of the proposed SJ-TIGBT is 74.9%, 41.1% and 26.1% lower than that of the SJ-TIGBT-A, SJ-TIGBT-B and SJ-TIGBT-C, respectively. With the same <i>V</i><sub>ceon</sub> of 1.05 V and <i>N</i><sub>c</sub> of 1 × 10<sup>15</sup> cm<sup>−3</sup>, the turn-off loss of the proposed SJ-TIGBT is only 6.44 mJ/cm<sup>2</sup>, which is 73.7% and 35.4% lower than that of SJ-TIGBT-B and SJ-TIGBT-C, respectively.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1345 - 1354"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual injection enhanced super junction TIGBT with narrow mesa and floating-P region\",\"authors\":\"Jinping Zhang,&nbsp;Mengxiao Li,&nbsp;Yunxiang Huang,&nbsp;Bing Xiao,&nbsp;Bo Zhang\",\"doi\":\"10.1007/s10825-024-02218-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the conventional super junction trench insulated gate bipolar transistor (SJ-TIGBT), the higher the N/P column doping concentration (<i>N</i><sub>c</sub>), the better the electrical characteristics can be obtained. However, considering the negative impact of charge imbalance of the N/P column on the breakdown voltage (<i>BV</i>), the value of <i>N</i><sub>c</sub> is limited, which limits the improvement of device performances. In this paper, a novel SJ-TIGBT with narrow mesa (NM) and floating-P (FP) region (NMFP-SJ-TIGBT) is proposed. The electrical characteristics of the proposed SJ-TIGBT are significantly enhanced owing to the dual injection enhancement effect provided by the NM and FP region. Moreover, for the proposed SJ device, the excellent performance obtained in the lower <i>N</i><sub>c</sub> regime alleviates the negative impact of charge imbalance of N/P column on the <i>BV</i>, which greatly improves its fabrication process tolerance. The simulation results show that compared to the conventional SJ-TIGBT (SJ-TIGBT-A), a SJ-TIGBT with an n-injector layer (SJ-TIGBT-B) and a SJ-TIGBT with a floating-P column under the gate (SJ-TIGBT-C), the proposed structure demonstrates a significantly lower and almost constant on-state voltage drop (<i>V</i><sub>ceon</sub>). At a collector current density of 100 A/cm<sup>2</sup> and <i>N</i><sub>c</sub> of 1 × 10<sup>15</sup> cm<sup>−3</sup>, the <i>V</i><sub>ceon</sub> of the proposed SJ-TIGBT is 74.9%, 41.1% and 26.1% lower than that of the SJ-TIGBT-A, SJ-TIGBT-B and SJ-TIGBT-C, respectively. With the same <i>V</i><sub>ceon</sub> of 1.05 V and <i>N</i><sub>c</sub> of 1 × 10<sup>15</sup> cm<sup>−3</sup>, the turn-off loss of the proposed SJ-TIGBT is only 6.44 mJ/cm<sup>2</sup>, which is 73.7% and 35.4% lower than that of SJ-TIGBT-B and SJ-TIGBT-C, respectively.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 6\",\"pages\":\"1345 - 1354\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02218-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02218-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于传统的超级结沟槽绝缘栅双极晶体管(SJ-TIGBT),N/P 柱掺杂浓度(Nc)越高,电气特性越好。然而,考虑到 N/P 柱电荷不平衡对击穿电压 (BV) 的负面影响,Nc 的值是有限的,这限制了器件性能的提高。本文提出了一种新型 SJ-TIGBT,它具有窄介(NM)和浮-P(FP)区(NMFP-SJ-TIGBT)。由于 NM 和 FP 区提供了双重注入增强效应,所提出的 SJ-TIGBT 的电气特性得到了显著增强。此外,对于所提出的 SJ 器件,在低 Nc 状态下所获得的优异性能减轻了 N/P 柱电荷不平衡对 BV 的负面影响,从而大大提高了其制造工艺容差。仿真结果表明,与传统的 SJ-TIGBT(SJ-TIGBT-A)、带有 n 注入层的 SJ-TIGBT (SJ-TIGBT-B)和栅极下带有浮动 P 柱的 SJ-TIGBT (SJ-TIGBT-C)相比,所提出的结构具有显著较低且几乎恒定的导通压降(Vceon)。在集电极电流密度为 100 A/cm2 和 Nc 为 1 × 1015 cm-3 时,拟议 SJ-TIGBT 的 Vceon 分别比 SJ-TIGBT-A、SJ-TIGBT-B 和 SJ-TIGBT-C 低 74.9%、41.1% 和 26.1%。在相同的 1.05 V Vceon 和 1 × 1015 cm-3 Nc 条件下,所提出的 SJ-TIGBT 的关断损耗仅为 6.44 mJ/cm2,分别比 SJ-TIGBT-B 和 SJ-TIGBT-C 低 73.7% 和 35.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual injection enhanced super junction TIGBT with narrow mesa and floating-P region

Dual injection enhanced super junction TIGBT with narrow mesa and floating-P region

For the conventional super junction trench insulated gate bipolar transistor (SJ-TIGBT), the higher the N/P column doping concentration (Nc), the better the electrical characteristics can be obtained. However, considering the negative impact of charge imbalance of the N/P column on the breakdown voltage (BV), the value of Nc is limited, which limits the improvement of device performances. In this paper, a novel SJ-TIGBT with narrow mesa (NM) and floating-P (FP) region (NMFP-SJ-TIGBT) is proposed. The electrical characteristics of the proposed SJ-TIGBT are significantly enhanced owing to the dual injection enhancement effect provided by the NM and FP region. Moreover, for the proposed SJ device, the excellent performance obtained in the lower Nc regime alleviates the negative impact of charge imbalance of N/P column on the BV, which greatly improves its fabrication process tolerance. The simulation results show that compared to the conventional SJ-TIGBT (SJ-TIGBT-A), a SJ-TIGBT with an n-injector layer (SJ-TIGBT-B) and a SJ-TIGBT with a floating-P column under the gate (SJ-TIGBT-C), the proposed structure demonstrates a significantly lower and almost constant on-state voltage drop (Vceon). At a collector current density of 100 A/cm2 and Nc of 1 × 1015 cm−3, the Vceon of the proposed SJ-TIGBT is 74.9%, 41.1% and 26.1% lower than that of the SJ-TIGBT-A, SJ-TIGBT-B and SJ-TIGBT-C, respectively. With the same Vceon of 1.05 V and Nc of 1 × 1015 cm−3, the turn-off loss of the proposed SJ-TIGBT is only 6.44 mJ/cm2, which is 73.7% and 35.4% lower than that of SJ-TIGBT-B and SJ-TIGBT-C, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信