{"title":"具有小局部的单子最优局部可修复代码的边界与构造","authors":"Weijun Fang;Ran Tao;Fang-Wei Fu;Bin Chen;Shu-Tao Xia","doi":"10.1109/TIT.2024.3448265","DOIUrl":null,"url":null,"abstract":"An \n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\n-locally repairable code (LRC) is called a Singleton-optimal LRC if it achieves the Singleton-type bound. Analogous to the classical MDS conjecture, the maximal length problem of Singleton-optimal LRCs has attracted a lot of attention in recent years. In this paper, we give an improved upper bound for the length of q-ary Singleton-optimal LRCs with disjoint repair groups such that \n<inline-formula> <tex-math>$(r+1)\\mid n$ </tex-math></inline-formula>\n based on the parity-check matrix approach. In particular, for any Singleton-optimal \n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\n-LRCs, we show that: 1) \n<inline-formula> <tex-math>$n\\le q+d-4$ </tex-math></inline-formula>\n, when \n<inline-formula> <tex-math>$r=2$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=3e+8$ </tex-math></inline-formula>\n with \n<inline-formula> <tex-math>$e\\ge 0$ </tex-math></inline-formula>\n; 2) \n<inline-formula> <tex-math>$n\\leq (r+1)\\left \\lfloor {{\\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\\right \\rfloor $ </tex-math></inline-formula>\n, when \n<inline-formula> <tex-math>$d\\ge 8$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$\\max \\left \\{{{3,\\frac {d-e-6}{e+1}}}\\right \\}\\le r\\le \\frac {d-e-3}{e+1}$ </tex-math></inline-formula>\n for any \n<inline-formula> <tex-math>$0\\le e\\le \\left \\lfloor {{\\frac {d-6}{4} }}\\right \\rfloor $ </tex-math></inline-formula>\n. Furthermore, we establish equivalent connections between the existence of Singleton-optimal \n<inline-formula> <tex-math>$(n,k,d;r)_{q}$ </tex-math></inline-formula>\n-LRCs for \n<inline-formula> <tex-math>$d=6, r=3$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$d=7, r=2$ </tex-math></inline-formula>\n with disjoint repair groups and some subsets of lines in finite projective space with certain properties. Consequently, we prove that the length of q-ary Singleton-optimal LRCs with minimum distance \n<inline-formula> <tex-math>$d=6$ </tex-math></inline-formula>\n and locality \n<inline-formula> <tex-math>$r=3$ </tex-math></inline-formula>\n is upper bounded by \n<inline-formula> <tex-math>$O(q^{1.5})$ </tex-math></inline-formula>\n. We construct Singleton-optimal \n<inline-formula> <tex-math>$(8\\le n\\le q+1,k,d=6,r=3)_{q}$ </tex-math></inline-formula>\n-LRC with disjoint repair groups such that \n<inline-formula> <tex-math>$4\\mid n$ </tex-math></inline-formula>\n and determine the exact value of the maximum code length for some specific q. We also prove the existence of \n<inline-formula> <tex-math>$(n, k, d=7; r=2)_{q}$ </tex-math></inline-formula>\n-Singleton-optimal LRCs for \n<inline-formula> <tex-math>$n \\approx \\sqrt {2}q$ </tex-math></inline-formula>\n.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 10","pages":"6842-6856"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds and Constructions of Singleton-Optimal Locally Repairable Codes With Small Localities\",\"authors\":\"Weijun Fang;Ran Tao;Fang-Wei Fu;Bin Chen;Shu-Tao Xia\",\"doi\":\"10.1109/TIT.2024.3448265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An \\n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\\n-locally repairable code (LRC) is called a Singleton-optimal LRC if it achieves the Singleton-type bound. Analogous to the classical MDS conjecture, the maximal length problem of Singleton-optimal LRCs has attracted a lot of attention in recent years. In this paper, we give an improved upper bound for the length of q-ary Singleton-optimal LRCs with disjoint repair groups such that \\n<inline-formula> <tex-math>$(r+1)\\\\mid n$ </tex-math></inline-formula>\\n based on the parity-check matrix approach. In particular, for any Singleton-optimal \\n<inline-formula> <tex-math>$(n, k, d; r)_{q}$ </tex-math></inline-formula>\\n-LRCs, we show that: 1) \\n<inline-formula> <tex-math>$n\\\\le q+d-4$ </tex-math></inline-formula>\\n, when \\n<inline-formula> <tex-math>$r=2$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$d=3e+8$ </tex-math></inline-formula>\\n with \\n<inline-formula> <tex-math>$e\\\\ge 0$ </tex-math></inline-formula>\\n; 2) \\n<inline-formula> <tex-math>$n\\\\leq (r+1)\\\\left \\\\lfloor {{\\\\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\\\\right \\\\rfloor $ </tex-math></inline-formula>\\n, when \\n<inline-formula> <tex-math>$d\\\\ge 8$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$\\\\max \\\\left \\\\{{{3,\\\\frac {d-e-6}{e+1}}}\\\\right \\\\}\\\\le r\\\\le \\\\frac {d-e-3}{e+1}$ </tex-math></inline-formula>\\n for any \\n<inline-formula> <tex-math>$0\\\\le e\\\\le \\\\left \\\\lfloor {{\\\\frac {d-6}{4} }}\\\\right \\\\rfloor $ </tex-math></inline-formula>\\n. Furthermore, we establish equivalent connections between the existence of Singleton-optimal \\n<inline-formula> <tex-math>$(n,k,d;r)_{q}$ </tex-math></inline-formula>\\n-LRCs for \\n<inline-formula> <tex-math>$d=6, r=3$ </tex-math></inline-formula>\\n and \\n<inline-formula> <tex-math>$d=7, r=2$ </tex-math></inline-formula>\\n with disjoint repair groups and some subsets of lines in finite projective space with certain properties. Consequently, we prove that the length of q-ary Singleton-optimal LRCs with minimum distance \\n<inline-formula> <tex-math>$d=6$ </tex-math></inline-formula>\\n and locality \\n<inline-formula> <tex-math>$r=3$ </tex-math></inline-formula>\\n is upper bounded by \\n<inline-formula> <tex-math>$O(q^{1.5})$ </tex-math></inline-formula>\\n. We construct Singleton-optimal \\n<inline-formula> <tex-math>$(8\\\\le n\\\\le q+1,k,d=6,r=3)_{q}$ </tex-math></inline-formula>\\n-LRC with disjoint repair groups such that \\n<inline-formula> <tex-math>$4\\\\mid n$ </tex-math></inline-formula>\\n and determine the exact value of the maximum code length for some specific q. We also prove the existence of \\n<inline-formula> <tex-math>$(n, k, d=7; r=2)_{q}$ </tex-math></inline-formula>\\n-Singleton-optimal LRCs for \\n<inline-formula> <tex-math>$n \\\\approx \\\\sqrt {2}q$ </tex-math></inline-formula>\\n.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 10\",\"pages\":\"6842-6856\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643586/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643586/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Bounds and Constructions of Singleton-Optimal Locally Repairable Codes With Small Localities
An
$(n, k, d; r)_{q}$
-locally repairable code (LRC) is called a Singleton-optimal LRC if it achieves the Singleton-type bound. Analogous to the classical MDS conjecture, the maximal length problem of Singleton-optimal LRCs has attracted a lot of attention in recent years. In this paper, we give an improved upper bound for the length of q-ary Singleton-optimal LRCs with disjoint repair groups such that
$(r+1)\mid n$
based on the parity-check matrix approach. In particular, for any Singleton-optimal
$(n, k, d; r)_{q}$
-LRCs, we show that: 1)
$n\le q+d-4$
, when
$r=2$
and
$d=3e+8$
with
$e\ge 0$
; 2)
$n\leq (r+1)\left \lfloor {{\frac {2(q^{2}+q+1)}{r(r+1)} +e+1}}\right \rfloor $
, when
$d\ge 8$
and
$\max \left \{{{3,\frac {d-e-6}{e+1}}}\right \}\le r\le \frac {d-e-3}{e+1}$
for any
$0\le e\le \left \lfloor {{\frac {d-6}{4} }}\right \rfloor $
. Furthermore, we establish equivalent connections between the existence of Singleton-optimal
$(n,k,d;r)_{q}$
-LRCs for
$d=6, r=3$
and
$d=7, r=2$
with disjoint repair groups and some subsets of lines in finite projective space with certain properties. Consequently, we prove that the length of q-ary Singleton-optimal LRCs with minimum distance
$d=6$
and locality
$r=3$
is upper bounded by
$O(q^{1.5})$
. We construct Singleton-optimal
$(8\le n\le q+1,k,d=6,r=3)_{q}$
-LRC with disjoint repair groups such that
$4\mid n$
and determine the exact value of the maximum code length for some specific q. We also prove the existence of
$(n, k, d=7; r=2)_{q}$
-Singleton-optimal LRCs for
$n \approx \sqrt {2}q$
.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.