使用 ℓ1 正则器进行回归的近似留一交叉验证

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arnab Auddy;Haolin Zou;Kamiar Rahnama Rad;Arian Maleki
{"title":"使用 ℓ1 正则器进行回归的近似留一交叉验证","authors":"Arnab Auddy;Haolin Zou;Kamiar Rahnama Rad;Arian Maleki","doi":"10.1109/TIT.2024.3450002","DOIUrl":null,"url":null,"abstract":"The out-of-sample error (OO) is the main quantity of interest in risk estimation and model selection. Leave-one-out cross validation (LO) offers a (nearly) distribution-free yet computationally demanding approach to estimate OO. Recent theoretical work showed that approximate leave-one-out cross validation (ALO) is a computationally efficient and statistically reliable estimate of LO (and OO) for generalized linear models with differentiable regularizers. For problems involving non-differentiable regularizers, despite significant empirical evidence, the theoretical understanding of ALO’s error remains unknown. In this paper, we present a novel theory for a wide class of problems in the generalized linear model family with non-differentiable regularizers. We bound the error \n<inline-formula> <tex-math>$|{\\mathrm { ALO}}-{\\mathrm { LO}}|$ </tex-math></inline-formula>\n in terms of intuitive metrics such as the size of leave-i-out perturbations in active sets, sample size n, number of features p and regularization parameters. As a consequence, for the \n<inline-formula> <tex-math>$\\ell _{1}$ </tex-math></inline-formula>\n-regularized problems, we show that \n<inline-formula> <tex-math>$|{\\mathrm { ALO}}-{\\mathrm { LO}}| \\xrightarrow {p\\rightarrow \\infty } 0$ </tex-math></inline-formula>\n while \n<inline-formula> <tex-math>$n/p$ </tex-math></inline-formula>\n and signal-to-noise ratio (SNR) are bounded.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"8040-8071"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Leave-One-Out Cross Validation for Regression With ℓ₁ Regularizers\",\"authors\":\"Arnab Auddy;Haolin Zou;Kamiar Rahnama Rad;Arian Maleki\",\"doi\":\"10.1109/TIT.2024.3450002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The out-of-sample error (OO) is the main quantity of interest in risk estimation and model selection. Leave-one-out cross validation (LO) offers a (nearly) distribution-free yet computationally demanding approach to estimate OO. Recent theoretical work showed that approximate leave-one-out cross validation (ALO) is a computationally efficient and statistically reliable estimate of LO (and OO) for generalized linear models with differentiable regularizers. For problems involving non-differentiable regularizers, despite significant empirical evidence, the theoretical understanding of ALO’s error remains unknown. In this paper, we present a novel theory for a wide class of problems in the generalized linear model family with non-differentiable regularizers. We bound the error \\n<inline-formula> <tex-math>$|{\\\\mathrm { ALO}}-{\\\\mathrm { LO}}|$ </tex-math></inline-formula>\\n in terms of intuitive metrics such as the size of leave-i-out perturbations in active sets, sample size n, number of features p and regularization parameters. As a consequence, for the \\n<inline-formula> <tex-math>$\\\\ell _{1}$ </tex-math></inline-formula>\\n-regularized problems, we show that \\n<inline-formula> <tex-math>$|{\\\\mathrm { ALO}}-{\\\\mathrm { LO}}| \\\\xrightarrow {p\\\\rightarrow \\\\infty } 0$ </tex-math></inline-formula>\\n while \\n<inline-formula> <tex-math>$n/p$ </tex-math></inline-formula>\\n and signal-to-noise ratio (SNR) are bounded.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"8040-8071\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10648927/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10648927/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

样本外误差(OO)是风险估计和模型选择中的主要关注量。样本外误差交叉验证(LO)提供了一种(几乎)无分布但计算要求高的方法来估计样本外误差。最近的理论工作表明,对于具有可微分正则的广义线性模型,近似留一交叉验证(ALO)是一种计算高效、统计可靠的 LO(和 OO)估计方法。对于涉及非可变正则的问题,尽管有大量的经验证据,但人们对 ALO 误差的理论理解仍然是未知的。在本文中,我们针对广义线性模型族中一类具有非可变正则的问题提出了一种新理论。我们用一些直观的指标来约束误差 $|/{mathrm{ALO}}-{/mathrm{LO}}|$,这些指标包括活动集中遗漏扰动的大小、样本大小 n、特征数量 p 和正则化参数。因此,对于 $\ell _{1}$ 规则化问题,我们证明了 $|{mathrm { ALO}}-{mathrm { LO}}| \xrightarrow {p\rightarrow \infty }0$ 而 $n/p$ 和信噪比 (SNR) 是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Leave-One-Out Cross Validation for Regression With ℓ₁ Regularizers
The out-of-sample error (OO) is the main quantity of interest in risk estimation and model selection. Leave-one-out cross validation (LO) offers a (nearly) distribution-free yet computationally demanding approach to estimate OO. Recent theoretical work showed that approximate leave-one-out cross validation (ALO) is a computationally efficient and statistically reliable estimate of LO (and OO) for generalized linear models with differentiable regularizers. For problems involving non-differentiable regularizers, despite significant empirical evidence, the theoretical understanding of ALO’s error remains unknown. In this paper, we present a novel theory for a wide class of problems in the generalized linear model family with non-differentiable regularizers. We bound the error $|{\mathrm { ALO}}-{\mathrm { LO}}|$ in terms of intuitive metrics such as the size of leave-i-out perturbations in active sets, sample size n, number of features p and regularization parameters. As a consequence, for the $\ell _{1}$ -regularized problems, we show that $|{\mathrm { ALO}}-{\mathrm { LO}}| \xrightarrow {p\rightarrow \infty } 0$ while $n/p$ and signal-to-noise ratio (SNR) are bounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信