基于散射的任意背景下结构的特征模式理论:计算、基准和应用

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chenbo Shi;Jin Pan;Xin Gu;Shichen Liang;Le Zuo
{"title":"基于散射的任意背景下结构的特征模式理论:计算、基准和应用","authors":"Chenbo Shi;Jin Pan;Xin Gu;Shichen Liang;Le Zuo","doi":"10.1109/TAP.2024.3450298","DOIUrl":null,"url":null,"abstract":"This article presents a novel approach for computing substructure characteristic modes. This method leverages electromagnetic (EM) scattering matrices and spherical wave expansion to directly decompose EM fields. Unlike conventional methods that rely on the impedance matrix generated by the method of moments (MoMs), our technique simplifies the problem into a small-scale ordinary eigenvalue problem, improving numerical dynamics and computational efficiency. We have developed analytical substructure characteristic mode solutions for a scenario involving two spheres, which can serve as benchmarks for evaluating other numerical solvers. A key advantage of our method is its independence from specific MoM frameworks, allowing for the use of various numerical methods. This flexibility paves the way for substructure characteristic mode decomposition to become a universal frequency-domain technique.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 10","pages":"7860-7871"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scattering-Based Characteristic Mode Theory for Structures in Arbitrary Background: Computation, Benchmarks, and Applications\",\"authors\":\"Chenbo Shi;Jin Pan;Xin Gu;Shichen Liang;Le Zuo\",\"doi\":\"10.1109/TAP.2024.3450298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel approach for computing substructure characteristic modes. This method leverages electromagnetic (EM) scattering matrices and spherical wave expansion to directly decompose EM fields. Unlike conventional methods that rely on the impedance matrix generated by the method of moments (MoMs), our technique simplifies the problem into a small-scale ordinary eigenvalue problem, improving numerical dynamics and computational efficiency. We have developed analytical substructure characteristic mode solutions for a scenario involving two spheres, which can serve as benchmarks for evaluating other numerical solvers. A key advantage of our method is its independence from specific MoM frameworks, allowing for the use of various numerical methods. This flexibility paves the way for substructure characteristic mode decomposition to become a universal frequency-domain technique.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"72 10\",\"pages\":\"7860-7871\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663359/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663359/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种计算子结构特征模式的新方法。该方法利用电磁(EM)散射矩阵和球面波展开直接分解电磁场。与依赖矩法(MoMs)生成的阻抗矩阵的传统方法不同,我们的技术将问题简化为一个小规模的普通特征值问题,从而提高了数值动力学和计算效率。我们为涉及两个球体的情况开发了解析子结构特征模态解,这可以作为评估其他数值求解器的基准。我们方法的一个关键优势是独立于特定的 MoM 框架,允许使用各种数值方法。这种灵活性为子结构特征模态分解成为一种通用的频域技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering-Based Characteristic Mode Theory for Structures in Arbitrary Background: Computation, Benchmarks, and Applications
This article presents a novel approach for computing substructure characteristic modes. This method leverages electromagnetic (EM) scattering matrices and spherical wave expansion to directly decompose EM fields. Unlike conventional methods that rely on the impedance matrix generated by the method of moments (MoMs), our technique simplifies the problem into a small-scale ordinary eigenvalue problem, improving numerical dynamics and computational efficiency. We have developed analytical substructure characteristic mode solutions for a scenario involving two spheres, which can serve as benchmarks for evaluating other numerical solvers. A key advantage of our method is its independence from specific MoM frameworks, allowing for the use of various numerical methods. This flexibility paves the way for substructure characteristic mode decomposition to become a universal frequency-domain technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信