Dongli Cui, Gui Xiong, Lyuhan Ye, Richard Gornall, Ziwei Wang, Pat Heslop-Harrison, Qing Liu
{"title":"对麝香植物(Ensete、Musella 和 Musa 种)中黄酮类化合物生物合成基因的全基因组分析发现了黄酮类化合物 3',5'-羟化酶的扩增情况","authors":"Dongli Cui, Gui Xiong, Lyuhan Ye, Richard Gornall, Ziwei Wang, Pat Heslop-Harrison, Qing Liu","doi":"10.1093/aobpla/plae049","DOIUrl":null,"url":null,"abstract":"Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71 to 80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana, and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3’,5’-hydroxylase gene F3’5’H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide analysis of flavonoid biosynthetic genes in Musaceae (Ensete, Musella, and Musa species) reveals amplification of flavonoid 3’,5’-hydroxylase\",\"authors\":\"Dongli Cui, Gui Xiong, Lyuhan Ye, Richard Gornall, Ziwei Wang, Pat Heslop-Harrison, Qing Liu\",\"doi\":\"10.1093/aobpla/plae049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71 to 80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana, and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3’,5’-hydroxylase gene F3’5’H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.\",\"PeriodicalId\":48955,\"journal\":{\"name\":\"AoB Plants\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AoB Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aobpla/plae049\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Genome-wide analysis of flavonoid biosynthetic genes in Musaceae (Ensete, Musella, and Musa species) reveals amplification of flavonoid 3’,5’-hydroxylase
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71 to 80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana, and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3’,5’-hydroxylase gene F3’5’H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.