制备具有单个银核的氮化镓纳米晶体

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Vojtěch Ćalkovský, Jindřich Mach, Miroslav Bartošík, Jakub Piastek, Marek Kostka, Vojtěch Mikerásek, Linda Supalová, Martin Konečný, Michal Kvapil, Michal Horák, Tomáš Šikola
{"title":"制备具有单个银核的氮化镓纳米晶体","authors":"Vojtěch Ćalkovský, Jindřich Mach, Miroslav Bartošík, Jakub Piastek, Marek Kostka, Vojtěch Mikerásek, Linda Supalová, Martin Konečný, Michal Kvapil, Michal Horák, Tomáš Šikola","doi":"10.1021/acs.cgd.4c00776","DOIUrl":null,"url":null,"abstract":"We report on a low-temperature hybrid method for the preparation of GaN nanocrystals (NCs) with embedded single Ag cores. GaN growth is realized by a physical vapor deposition of Ga atoms on a SiO<sub>2</sub> substrate with colloidal Ag nanoparticles on its surface, assisted with an ultralow energy (50 eV) nitrogen-ion-beam bombardment at temperatures being significantly lower (<i>T</i> &lt; 350 °C) than in conventional GaN deposition techniques (e.g., MOCVD, 1000°C). We call this method Low Temperature Droplet Epitaxy (LTDE). The low deposition temperature allows GaN nanocrystals to be prepared with embedded metal–aluminum colloidal nanoparticles as their cores. A combination of STEM, SEM, scanning Auger microscopy, XPS, and AFM was applied to characterize semiconductor and metal nanoparticles. By their implementation, we optimized morphology, structure, and chemical composition of these nanocrystals and, consequently, demonstrated their enhanced photoluminescent properties.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of GaN Nanocrystals with Single Ag Cores\",\"authors\":\"Vojtěch Ćalkovský, Jindřich Mach, Miroslav Bartošík, Jakub Piastek, Marek Kostka, Vojtěch Mikerásek, Linda Supalová, Martin Konečný, Michal Kvapil, Michal Horák, Tomáš Šikola\",\"doi\":\"10.1021/acs.cgd.4c00776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a low-temperature hybrid method for the preparation of GaN nanocrystals (NCs) with embedded single Ag cores. GaN growth is realized by a physical vapor deposition of Ga atoms on a SiO<sub>2</sub> substrate with colloidal Ag nanoparticles on its surface, assisted with an ultralow energy (50 eV) nitrogen-ion-beam bombardment at temperatures being significantly lower (<i>T</i> &lt; 350 °C) than in conventional GaN deposition techniques (e.g., MOCVD, 1000°C). We call this method Low Temperature Droplet Epitaxy (LTDE). The low deposition temperature allows GaN nanocrystals to be prepared with embedded metal–aluminum colloidal nanoparticles as their cores. A combination of STEM, SEM, scanning Auger microscopy, XPS, and AFM was applied to characterize semiconductor and metal nanoparticles. By their implementation, we optimized morphology, structure, and chemical composition of these nanocrystals and, consequently, demonstrated their enhanced photoluminescent properties.\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.cgd.4c00776\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00776","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种制备内嵌单个银核的氮化镓(GaN)纳米晶体(NC)的低温混合方法。在超低能量(50 eV)氮离子束轰击的辅助下,镓原子在二氧化硅衬底上进行物理气相沉积,并在其表面形成胶体状的银纳米粒子,其生长温度(T < 350 ℃)明显低于传统的镓沉积技术(如 MOCVD,1000 ℃)。我们称这种方法为低温液滴外延(LTDE)。由于沉积温度低,制备出的氮化镓纳米晶体以嵌入的金属铝胶体纳米粒子为核心。我们结合 STEM、SEM、扫描欧杰显微镜、XPS 和原子力显微镜对半导体和金属纳米粒子进行了表征。通过实施这些方法,我们优化了这些纳米晶体的形态、结构和化学成分,从而证明了它们具有更强的光致发光特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Preparation of GaN Nanocrystals with Single Ag Cores

Preparation of GaN Nanocrystals with Single Ag Cores
We report on a low-temperature hybrid method for the preparation of GaN nanocrystals (NCs) with embedded single Ag cores. GaN growth is realized by a physical vapor deposition of Ga atoms on a SiO2 substrate with colloidal Ag nanoparticles on its surface, assisted with an ultralow energy (50 eV) nitrogen-ion-beam bombardment at temperatures being significantly lower (T < 350 °C) than in conventional GaN deposition techniques (e.g., MOCVD, 1000°C). We call this method Low Temperature Droplet Epitaxy (LTDE). The low deposition temperature allows GaN nanocrystals to be prepared with embedded metal–aluminum colloidal nanoparticles as their cores. A combination of STEM, SEM, scanning Auger microscopy, XPS, and AFM was applied to characterize semiconductor and metal nanoparticles. By their implementation, we optimized morphology, structure, and chemical composition of these nanocrystals and, consequently, demonstrated their enhanced photoluminescent properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信