{"title":"猿猴精子受精基因 ZP3r 的反复独立假基因化事件","authors":"J. A. Carlisle, D. H. Gurbuz, W. J. Swanson","doi":"10.1007/s00239-024-10192-x","DOIUrl":null,"url":null,"abstract":"<p>Many reproductive proteins show signatures of rapid evolution through sequence divergence and duplication. These features of reproductive genes may complicate the detection of orthologs across taxa, making it difficult to connect studies in model systems to human biology. In mice, ZP3r/sp56 is a binding partner to the egg coat protein ZP3 and may mediate induction of the acrosome reaction, a crucial step in fertilization. In rodents, ZP3r, as a member of the Regulators of Complement Activation cluster, is surrounded by paralogs, some of which have been shown to be evolving under positive selection. Although primate egg coats also contain ZP3, sequence divergence paired with paralogous relationships with neighboring genes has complicated the accurate identification of the human ZP3r ortholog. Here, we phylogenetically and syntenically resolve that the human ortholog of ZP3r is the pseudogene <i>C4BPAP1</i>. We investigate the evolution of this gene within primates. We observe independent pseudogenization events of ZP3r in all Apes with the exception of Orangutans, and independent pseudogenization events in many monkey species. ZP3r in both primates that retain ZP3r and in rodents contains positively selected sites. We hypothesize that redundant mechanisms mediate ZP3 recognition in mammals and ZP3r’s relative importance to ZP recognition varies across species.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Independent Pseudogenization Events of the Sperm Fertilization Gene ZP3r in Apes and Monkeys\",\"authors\":\"J. A. Carlisle, D. H. Gurbuz, W. J. Swanson\",\"doi\":\"10.1007/s00239-024-10192-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many reproductive proteins show signatures of rapid evolution through sequence divergence and duplication. These features of reproductive genes may complicate the detection of orthologs across taxa, making it difficult to connect studies in model systems to human biology. In mice, ZP3r/sp56 is a binding partner to the egg coat protein ZP3 and may mediate induction of the acrosome reaction, a crucial step in fertilization. In rodents, ZP3r, as a member of the Regulators of Complement Activation cluster, is surrounded by paralogs, some of which have been shown to be evolving under positive selection. Although primate egg coats also contain ZP3, sequence divergence paired with paralogous relationships with neighboring genes has complicated the accurate identification of the human ZP3r ortholog. Here, we phylogenetically and syntenically resolve that the human ortholog of ZP3r is the pseudogene <i>C4BPAP1</i>. We investigate the evolution of this gene within primates. We observe independent pseudogenization events of ZP3r in all Apes with the exception of Orangutans, and independent pseudogenization events in many monkey species. ZP3r in both primates that retain ZP3r and in rodents contains positively selected sites. We hypothesize that redundant mechanisms mediate ZP3 recognition in mammals and ZP3r’s relative importance to ZP recognition varies across species.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10192-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10192-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Recurrent Independent Pseudogenization Events of the Sperm Fertilization Gene ZP3r in Apes and Monkeys
Many reproductive proteins show signatures of rapid evolution through sequence divergence and duplication. These features of reproductive genes may complicate the detection of orthologs across taxa, making it difficult to connect studies in model systems to human biology. In mice, ZP3r/sp56 is a binding partner to the egg coat protein ZP3 and may mediate induction of the acrosome reaction, a crucial step in fertilization. In rodents, ZP3r, as a member of the Regulators of Complement Activation cluster, is surrounded by paralogs, some of which have been shown to be evolving under positive selection. Although primate egg coats also contain ZP3, sequence divergence paired with paralogous relationships with neighboring genes has complicated the accurate identification of the human ZP3r ortholog. Here, we phylogenetically and syntenically resolve that the human ortholog of ZP3r is the pseudogene C4BPAP1. We investigate the evolution of this gene within primates. We observe independent pseudogenization events of ZP3r in all Apes with the exception of Orangutans, and independent pseudogenization events in many monkey species. ZP3r in both primates that retain ZP3r and in rodents contains positively selected sites. We hypothesize that redundant mechanisms mediate ZP3 recognition in mammals and ZP3r’s relative importance to ZP recognition varies across species.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.