{"title":"用绿色方法使玄武岩鳞片功能化,从而提高防腐涂料的性能","authors":"Yichao Guo, Tianyue Jia, Jingsha Tan, Bo Zhang, Honglei Guo, Zhiyuan Feng, Bing Lei, Ping Zhang, Guozhe Meng","doi":"10.1007/s40195-024-01747-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, basalt scales were activated by air plasma and were subsequently deposited with cerium dioxide nanoparticles to obtain CeO<sub>2</sub>-modified basalts (CB). Inspired by mussel biomimetics, polydopamine (PDA) and 3-glycidoxypropyltrimethoxysilane were further employed to modify the properties of CB to obtain functionalized basalt scales (CBD). This treatment greatly increased the interfacial compatibility between inorganic fillers and epoxy resin. At the same time, PDA can form chelates with iron ions in the anodic area to prevent further corrosion. Tensile, water absorption, and electrochemical impedance spectrum measurements showed that incorporating CBD into epoxy resins resulted in the composite coatings with higher mechanical properties, water penetration resistance, corrosion resistance, and lower wetting properties.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40195-024-01747-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Functionalized Basalt Scales by Green Method for Higher Performance of Anticorrosion Coatings\",\"authors\":\"Yichao Guo, Tianyue Jia, Jingsha Tan, Bo Zhang, Honglei Guo, Zhiyuan Feng, Bing Lei, Ping Zhang, Guozhe Meng\",\"doi\":\"10.1007/s40195-024-01747-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, basalt scales were activated by air plasma and were subsequently deposited with cerium dioxide nanoparticles to obtain CeO<sub>2</sub>-modified basalts (CB). Inspired by mussel biomimetics, polydopamine (PDA) and 3-glycidoxypropyltrimethoxysilane were further employed to modify the properties of CB to obtain functionalized basalt scales (CBD). This treatment greatly increased the interfacial compatibility between inorganic fillers and epoxy resin. At the same time, PDA can form chelates with iron ions in the anodic area to prevent further corrosion. Tensile, water absorption, and electrochemical impedance spectrum measurements showed that incorporating CBD into epoxy resins resulted in the composite coatings with higher mechanical properties, water penetration resistance, corrosion resistance, and lower wetting properties.</p></div>\",\"PeriodicalId\":457,\"journal\":{\"name\":\"Acta Metallurgica Sinica-English Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40195-024-01747-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Sinica-English Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40195-024-01747-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01747-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Functionalized Basalt Scales by Green Method for Higher Performance of Anticorrosion Coatings
In this study, basalt scales were activated by air plasma and were subsequently deposited with cerium dioxide nanoparticles to obtain CeO2-modified basalts (CB). Inspired by mussel biomimetics, polydopamine (PDA) and 3-glycidoxypropyltrimethoxysilane were further employed to modify the properties of CB to obtain functionalized basalt scales (CBD). This treatment greatly increased the interfacial compatibility between inorganic fillers and epoxy resin. At the same time, PDA can form chelates with iron ions in the anodic area to prevent further corrosion. Tensile, water absorption, and electrochemical impedance spectrum measurements showed that incorporating CBD into epoxy resins resulted in the composite coatings with higher mechanical properties, water penetration resistance, corrosion resistance, and lower wetting properties.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.