SelTox:发现选择性抗菌纳米粒子定向消灭致病细菌的能力

Susan Jyakhwo, Valentina Bocharova, Nikita Serov, Andrei Dmitrenko, Vladimir V. Vinogradov
{"title":"SelTox:发现选择性抗菌纳米粒子定向消灭致病细菌的能力","authors":"Susan Jyakhwo, Valentina Bocharova, Nikita Serov, Andrei Dmitrenko, Vladimir V. Vinogradov","doi":"10.1002/admt.202400458","DOIUrl":null,"url":null,"abstract":"For years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) <jats:italic>R</jats:italic><jats:sup>2</jats:sup> score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, <jats:italic>Staphylococcus aureus</jats:italic>. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL<jats:sup>−1</jats:sup> is achieved when compared to non‐pathogenic bacteria, <jats:italic>Bacillus subtilis</jats:italic>. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria\",\"authors\":\"Susan Jyakhwo, Valentina Bocharova, Nikita Serov, Andrei Dmitrenko, Vladimir V. Vinogradov\",\"doi\":\"10.1002/admt.202400458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) <jats:italic>R</jats:italic><jats:sup>2</jats:sup> score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, <jats:italic>Staphylococcus aureus</jats:italic>. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL<jats:sup>−1</jats:sup> is achieved when compared to non‐pathogenic bacteria, <jats:italic>Bacillus subtilis</jats:italic>. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,研究人员一直在寻找新型抗生素来对抗病原体感染。然而,抗生素缺乏特异性,会伤害有益微生物,并导致抗生素耐药菌株的出现。本研究提出了一种创新方法,通过发现选择性抗菌纳米粒子,选择性地消灭致病细菌,同时将对非致病细菌的影响降至最低。为此,我们建立了一个全面的数据库来描述纳米粒子及其抗菌活性。然后,训练 CatBoost 回归模型来预测最小浓度(MC)和抑菌区(ZOI)。模型的十倍交叉验证(CV)R2 分别为 0.82 和 0.84,均方根误差(RMSE)分别为 0.46 和 2.41。最后,还开发了一种机器学习(ML)增强遗传算法(GA)来识别性能最佳的选择性抗菌 NPs。作为概念验证,确定了一种选择性抗菌纳米粒子 CuO,用于有针对性地消灭致病菌金黄色葡萄球菌。与非致病菌枯草杆菌相比,其最小杀菌浓度(MBC)达到了 392.85 µg mL-1。这些发现极大地促进了选择性毒性(SelTox)纳米粒子这一新兴研究领域的发展,并为今后探索 SelTox 纳米粒子与药物的协同作用打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria

SelTox: Discovering the Capacity of Selectively Antimicrobial Nanoparticles for Targeted Eradication of Pathogenic Bacteria
For years, researchers have searched for novel antibiotics to combat pathogenic infections. However, antibiotics lack specificity, harm beneficial microbes, and cause the emergence of antibiotic‐resistant strains. This study proposes an innovative approach to selectively eradicate pathogenic bacteria with a minimal effect on non‐pathogenic ones by discovering selectively antimicrobial nanoparticles. To achieve this, a comprehensive database is compiled to characterize nanoparticles and their antibacterial activity. Then, CatBoost regression models are trained for predicting minimal concentration (MC) and zone of inhibition (ZOI). The models achieve a ten‐fold cross‐validation (CV) R2 score of 0.82 and 0.84 with root mean square error (RMSE) of 0.46 and 2.41, respectively. Finally, a machine learning (ML) reinforced genetic algorithm (GA) is developed to identify the best‐performing selective antibacterial NPs. As a proof of concept, a selectively antibacterial nanoparticle, CuO, is identified for targeted eradication of a pathogenic bacteria, Staphylococcus aureus. A difference in minimal bactericidal concentration (MBC) of 392.85 µg mL−1 is achieved when compared to non‐pathogenic bacteria, Bacillus subtilis. These findings significantly contribute to the emerging research domain of selectively toxic (SelTox) nanoparticles and open the door for future exploration of synergetic interactions of SelTox nanoparticles with drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信