中国大跨度拱桥最新施工技术创新与实践

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jielian Zheng
{"title":"中国大跨度拱桥最新施工技术创新与实践","authors":"Jielian Zheng","doi":"10.1016/j.eng.2024.05.019","DOIUrl":null,"url":null,"abstract":"<div><div>Arch bridges provide significant technical and economic benefits under suitable conditions. In particular, concrete-filled steel tubular (CFST) arch bridges and steel-reinforced concrete (SRC) arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology, engineering materials, and construction equipment over the past 30 years. Under the leadership of the author, two record-breaking arch bridges—that is, the Pingnan Third Bridge (a CFST arch bridge), with a span of 560 m, and the Tian’e Longtan Bridge (an SRC arch bridge), with a span of 600 m—have been built in the past five years, embodying great technological breakthroughs in the construction of these two types of arch bridges. This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China. The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods, new in-tube concrete materials, in-tube concrete pouring techniques, a novel thrust abutment foundation for non-rocky terrain, and measures to reduce the quantity of temporary facilities. The technological innovations of SRC arch bridges involve arch skeleton stiffness selection, the development of encasing concrete materials, encasing concrete pouring, arch rib stress mitigation, and longitudinal reinforcement optimization. To conclude, future research focuses and development directions for these two types of arch bridges are proposed.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China\",\"authors\":\"Jielian Zheng\",\"doi\":\"10.1016/j.eng.2024.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arch bridges provide significant technical and economic benefits under suitable conditions. In particular, concrete-filled steel tubular (CFST) arch bridges and steel-reinforced concrete (SRC) arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology, engineering materials, and construction equipment over the past 30 years. Under the leadership of the author, two record-breaking arch bridges—that is, the Pingnan Third Bridge (a CFST arch bridge), with a span of 560 m, and the Tian’e Longtan Bridge (an SRC arch bridge), with a span of 600 m—have been built in the past five years, embodying great technological breakthroughs in the construction of these two types of arch bridges. This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China. The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods, new in-tube concrete materials, in-tube concrete pouring techniques, a novel thrust abutment foundation for non-rocky terrain, and measures to reduce the quantity of temporary facilities. The technological innovations of SRC arch bridges involve arch skeleton stiffness selection, the development of encasing concrete materials, encasing concrete pouring, arch rib stress mitigation, and longitudinal reinforcement optimization. To conclude, future research focuses and development directions for these two types of arch bridges are proposed.</div></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924003606\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924003606","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在适当的条件下,拱桥可带来巨大的技术和经济效益。其中,混凝土灌注钢管(CFST)拱桥和钢筋混凝土(SRC)拱桥是近 30 年来随着施工技术、工程材料和施工设备的进步而获得巨大经济竞争力和跨度增长潜力的两种拱桥类型。在笔者的领导下,近五年来建成了两座创纪录的拱桥--跨度达 560 米的屏南三桥(CFST 拱桥)和跨度达 600 米的天峨龙潭大桥(SRC 拱桥),体现了这两种拱桥建设技术上的巨大突破。本文以这两座拱桥为例,系统总结了我国 CFST 拱桥和 SRC 拱桥建设的最新技术创新与实践。CFST 拱桥的技术创新包括斜拉扣挂式悬臂拼装方法、新型管内混凝土材料、管内混凝土浇筑技术、适用于非岩石地形的新型推力墩台基础以及减少临时设施数量的措施。SRC 拱桥的技术创新涉及拱骨架刚度选择、套筒混凝土材料开发、套筒混凝土浇筑、拱肋应力缓解和纵向钢筋优化。最后,提出了这两种拱桥未来的研究重点和发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
Arch bridges provide significant technical and economic benefits under suitable conditions. In particular, concrete-filled steel tubular (CFST) arch bridges and steel-reinforced concrete (SRC) arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology, engineering materials, and construction equipment over the past 30 years. Under the leadership of the author, two record-breaking arch bridges—that is, the Pingnan Third Bridge (a CFST arch bridge), with a span of 560 m, and the Tian’e Longtan Bridge (an SRC arch bridge), with a span of 600 m—have been built in the past five years, embodying great technological breakthroughs in the construction of these two types of arch bridges. This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China. The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods, new in-tube concrete materials, in-tube concrete pouring techniques, a novel thrust abutment foundation for non-rocky terrain, and measures to reduce the quantity of temporary facilities. The technological innovations of SRC arch bridges involve arch skeleton stiffness selection, the development of encasing concrete materials, encasing concrete pouring, arch rib stress mitigation, and longitudinal reinforcement optimization. To conclude, future research focuses and development directions for these two types of arch bridges are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信