货架支撑仓库的延性对角线连接的实验行为

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Agnese Natali, Francesco Morelli, Cristian Vulcu, Dimitrios Tsarpalis, Dimitrios Vamvatsikos, Walter Salvatore, Benno Hoffmeister, Ioannis Vayas
{"title":"货架支撑仓库的延性对角线连接的实验行为","authors":"Agnese Natali,&nbsp;Francesco Morelli,&nbsp;Cristian Vulcu,&nbsp;Dimitrios Tsarpalis,&nbsp;Dimitrios Vamvatsikos,&nbsp;Walter Salvatore,&nbsp;Benno Hoffmeister,&nbsp;Ioannis Vayas","doi":"10.1007/s10518-024-01999-6","DOIUrl":null,"url":null,"abstract":"<div><p>Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6799 - 6828"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01999-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental behaviour of ductile diagonal connections for rack supported warehouses\",\"authors\":\"Agnese Natali,&nbsp;Francesco Morelli,&nbsp;Cristian Vulcu,&nbsp;Dimitrios Tsarpalis,&nbsp;Dimitrios Vamvatsikos,&nbsp;Walter Salvatore,&nbsp;Benno Hoffmeister,&nbsp;Ioannis Vayas\",\"doi\":\"10.1007/s10518-024-01999-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 13\",\"pages\":\"6799 - 6828\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01999-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01999-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01999-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

钢制货架系统被广泛用于仓储目的:它们是由连续桁架组成的薄壁结构,并与横梁相连,托盘货物就存放在这些桁架上。它们的几何形状和结构配置在很大程度上取决于市场和操作人员的需要,在现代应用中,货架还可以作为仓库本身的支撑结构,如货架支撑仓库或高架仓库。随着整体几何尺寸和存储材料总重量的增加,地震作用对设计的影响也越来越大。根据这一思路,本文介绍了针对韧性钢货架的专用抗震设计方法的开发和实验测试,并特别关注有货架支撑的仓库。这种方法利用了桁架的延展性,通过对角线-直角连接的塑性椭圆化机制引入延展性,同时采用量身定制的承载力设计,以确保结构其余部分的弹性行为,并防止脆性破坏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental behaviour of ductile diagonal connections for rack supported warehouses

Experimental behaviour of ductile diagonal connections for rack supported warehouses

Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信