S. Valkaniotis, D. Rapti, M. Taftsoglou, G. Papathanassiou, R. Caputo
{"title":"绘制地貌图以确定液化可能性:Piniada 谷地案例研究(希腊中部)","authors":"S. Valkaniotis, D. Rapti, M. Taftsoglou, G. Papathanassiou, R. Caputo","doi":"10.1007/s10518-024-01993-y","DOIUrl":null,"url":null,"abstract":"<div><p>Assessment of liquefaction susceptibility of sediments in alluvial plains is considered one of the first step for infrastructure planning, hazard mitigation, and land use management in seismically active regions. Subtle geomorphological features resulting from depositional processes could greatly contribute to estimating the liquefaction likelihood since they also dictate the type and distribution of sediments. Our case study is from the Piniada Valley (Greece), where widespread liquefaction phenomena were triggered by the 2021 Mw 6.3, Damasi earthquake. As we compiled a detailed geological map for the purposes of this investigation and correlated it to the spatial distribution of the earthquake-induced liquefaction phenomena, we observed that most of liquefaction surface evidence are related to point bars and abandoned river channels formed the last century. In particular, the areal liquefaction density was estimated at 60.7 and 67.1 manifestations per km<sup>2</sup>, for the point bars and abandoned channels, respectively. Following this outcome, we propose a refinement of the existing liquefaction susceptibility classifications by including point bar bodies as a distinct category, characterized by a very high susceptibility to liquefaction. In addition, we discuss the correlation between the observed liquefaction manifestations and the shallow lithofacies, sand or mud prone areas, within point bars. The outcome arisen by this research is that most of liquefaction phenomena (> 70%) occurred on the area covered by coarser materials deposited on the upstream part of high sinuosity meanders.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 11","pages":"5451 - 5474"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01993-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Geomorphological mapping for liquefaction likelihood: the Piniada Valley case study (central Greece)\",\"authors\":\"S. Valkaniotis, D. Rapti, M. Taftsoglou, G. Papathanassiou, R. Caputo\",\"doi\":\"10.1007/s10518-024-01993-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assessment of liquefaction susceptibility of sediments in alluvial plains is considered one of the first step for infrastructure planning, hazard mitigation, and land use management in seismically active regions. Subtle geomorphological features resulting from depositional processes could greatly contribute to estimating the liquefaction likelihood since they also dictate the type and distribution of sediments. Our case study is from the Piniada Valley (Greece), where widespread liquefaction phenomena were triggered by the 2021 Mw 6.3, Damasi earthquake. As we compiled a detailed geological map for the purposes of this investigation and correlated it to the spatial distribution of the earthquake-induced liquefaction phenomena, we observed that most of liquefaction surface evidence are related to point bars and abandoned river channels formed the last century. In particular, the areal liquefaction density was estimated at 60.7 and 67.1 manifestations per km<sup>2</sup>, for the point bars and abandoned channels, respectively. Following this outcome, we propose a refinement of the existing liquefaction susceptibility classifications by including point bar bodies as a distinct category, characterized by a very high susceptibility to liquefaction. In addition, we discuss the correlation between the observed liquefaction manifestations and the shallow lithofacies, sand or mud prone areas, within point bars. The outcome arisen by this research is that most of liquefaction phenomena (> 70%) occurred on the area covered by coarser materials deposited on the upstream part of high sinuosity meanders.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 11\",\"pages\":\"5451 - 5474\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01993-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01993-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01993-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Geomorphological mapping for liquefaction likelihood: the Piniada Valley case study (central Greece)
Assessment of liquefaction susceptibility of sediments in alluvial plains is considered one of the first step for infrastructure planning, hazard mitigation, and land use management in seismically active regions. Subtle geomorphological features resulting from depositional processes could greatly contribute to estimating the liquefaction likelihood since they also dictate the type and distribution of sediments. Our case study is from the Piniada Valley (Greece), where widespread liquefaction phenomena were triggered by the 2021 Mw 6.3, Damasi earthquake. As we compiled a detailed geological map for the purposes of this investigation and correlated it to the spatial distribution of the earthquake-induced liquefaction phenomena, we observed that most of liquefaction surface evidence are related to point bars and abandoned river channels formed the last century. In particular, the areal liquefaction density was estimated at 60.7 and 67.1 manifestations per km2, for the point bars and abandoned channels, respectively. Following this outcome, we propose a refinement of the existing liquefaction susceptibility classifications by including point bar bodies as a distinct category, characterized by a very high susceptibility to liquefaction. In addition, we discuss the correlation between the observed liquefaction manifestations and the shallow lithofacies, sand or mud prone areas, within point bars. The outcome arisen by this research is that most of liquefaction phenomena (> 70%) occurred on the area covered by coarser materials deposited on the upstream part of high sinuosity meanders.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.