{"title":"评估多方向地动对 RC 框架建筑的影响:利用脆弱性函数和回归分析的数据驱动法","authors":"Moustafa Moufid Kassem, Fadzli Mohamed Nazri, Zaid A. Al-Sadoon, Salmia Beddu","doi":"10.1007/s10518-024-02015-7","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the impact of earthquake directionality and orientation on the seismic performance of reinforced concrete (RC) frame structures, an area previously overlooked in seismic design. The multi-directional component of ground motion was not taken into consideration during the seismic performance design of the majority of RC frame structures. Focusing on a case study in Padang City, Indonesia, a region known for moderate seismic activity, this study assesses the behavior of an eight-story ordinary moment resisting frame (OMRF) under various directional components and orientation angles of ground motions. Through Nonlinear Dynamic Analysis (NL-DA) using Nonlinear Time History Analyses (NL-THA), the study incorporates 14 ground motions across East–West and North–South directions, varying from 0° to 60° in 15-degree increments. Incremental Dynamic Analysis (IDA) evaluates the building's response, employing capacity curves, fragility curves, and CMR scores to understand damage probabilities and structural behaviors under different earthquake directions. The objectives include (1) assessing the building's seismic resilience through IDA capacity curves in line with FEMA 356 performance-based design standards, (2) developing fragility curves and the CMR to predict the potential of damages and structural response in various ground motion directions, and (3) formulating a generic relationship between intensity measure (IM), structural behavior (S<sub>B</sub>), and incidence angle (θ) via regression analysis. Results highlight the crucial role of θ in influencing structural response, with deterioration in structural behavior noted as the angle of incidence increases. This pattern underscores the varying stress distributions and deformation patterns in response to directional ground movements. The study's findings emphasize incorporating directionality in seismic risk assessments and structural designs, offering valuable insights for improving resilience against future seismic events. Eventually, the link between θ, IM, and S<sub>B</sub> is crucial for assessing and mitigating seismic risk, since it indicates that θ is a major element impacting how buildings respond to seismic occurrences.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6567 - 6606"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of multi-directional ground motion on RC frame buildings: a data-driven approach using vulnerability functions and regression analysis\",\"authors\":\"Moustafa Moufid Kassem, Fadzli Mohamed Nazri, Zaid A. Al-Sadoon, Salmia Beddu\",\"doi\":\"10.1007/s10518-024-02015-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research explores the impact of earthquake directionality and orientation on the seismic performance of reinforced concrete (RC) frame structures, an area previously overlooked in seismic design. The multi-directional component of ground motion was not taken into consideration during the seismic performance design of the majority of RC frame structures. Focusing on a case study in Padang City, Indonesia, a region known for moderate seismic activity, this study assesses the behavior of an eight-story ordinary moment resisting frame (OMRF) under various directional components and orientation angles of ground motions. Through Nonlinear Dynamic Analysis (NL-DA) using Nonlinear Time History Analyses (NL-THA), the study incorporates 14 ground motions across East–West and North–South directions, varying from 0° to 60° in 15-degree increments. Incremental Dynamic Analysis (IDA) evaluates the building's response, employing capacity curves, fragility curves, and CMR scores to understand damage probabilities and structural behaviors under different earthquake directions. The objectives include (1) assessing the building's seismic resilience through IDA capacity curves in line with FEMA 356 performance-based design standards, (2) developing fragility curves and the CMR to predict the potential of damages and structural response in various ground motion directions, and (3) formulating a generic relationship between intensity measure (IM), structural behavior (S<sub>B</sub>), and incidence angle (θ) via regression analysis. Results highlight the crucial role of θ in influencing structural response, with deterioration in structural behavior noted as the angle of incidence increases. This pattern underscores the varying stress distributions and deformation patterns in response to directional ground movements. The study's findings emphasize incorporating directionality in seismic risk assessments and structural designs, offering valuable insights for improving resilience against future seismic events. Eventually, the link between θ, IM, and S<sub>B</sub> is crucial for assessing and mitigating seismic risk, since it indicates that θ is a major element impacting how buildings respond to seismic occurrences.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 13\",\"pages\":\"6567 - 6606\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02015-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02015-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Assessing the impact of multi-directional ground motion on RC frame buildings: a data-driven approach using vulnerability functions and regression analysis
This research explores the impact of earthquake directionality and orientation on the seismic performance of reinforced concrete (RC) frame structures, an area previously overlooked in seismic design. The multi-directional component of ground motion was not taken into consideration during the seismic performance design of the majority of RC frame structures. Focusing on a case study in Padang City, Indonesia, a region known for moderate seismic activity, this study assesses the behavior of an eight-story ordinary moment resisting frame (OMRF) under various directional components and orientation angles of ground motions. Through Nonlinear Dynamic Analysis (NL-DA) using Nonlinear Time History Analyses (NL-THA), the study incorporates 14 ground motions across East–West and North–South directions, varying from 0° to 60° in 15-degree increments. Incremental Dynamic Analysis (IDA) evaluates the building's response, employing capacity curves, fragility curves, and CMR scores to understand damage probabilities and structural behaviors under different earthquake directions. The objectives include (1) assessing the building's seismic resilience through IDA capacity curves in line with FEMA 356 performance-based design standards, (2) developing fragility curves and the CMR to predict the potential of damages and structural response in various ground motion directions, and (3) formulating a generic relationship between intensity measure (IM), structural behavior (SB), and incidence angle (θ) via regression analysis. Results highlight the crucial role of θ in influencing structural response, with deterioration in structural behavior noted as the angle of incidence increases. This pattern underscores the varying stress distributions and deformation patterns in response to directional ground movements. The study's findings emphasize incorporating directionality in seismic risk assessments and structural designs, offering valuable insights for improving resilience against future seismic events. Eventually, the link between θ, IM, and SB is crucial for assessing and mitigating seismic risk, since it indicates that θ is a major element impacting how buildings respond to seismic occurrences.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.