Ajmal Hayat, Ismail Shah, Abdul Jabbar, Ayman Nafady, Aziz Balouch, Muhammad Raza Shah, Sayyed Ibrahim Shah, Razium Ali Soomro, Sirajuddin
{"title":"通过开发和设计用于橙皮甙和芦丁联合给药的自纳米乳化给药系统(SNEDDS)增强动物模型的伤口愈合活性","authors":"Ajmal Hayat, Ismail Shah, Abdul Jabbar, Ayman Nafady, Aziz Balouch, Muhammad Raza Shah, Sayyed Ibrahim Shah, Razium Ali Soomro, Sirajuddin","doi":"10.1007/s10876-024-02679-w","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this work is to develop a self-nanoemulsifying drug delivery system (SNEDDS) for Hesperidin (HES) and Rutin (RUT) to improve their biopharmaceutical properties. The wound healing potential of HES-RUT-SNEDDS was compared to those of pure HES suspension (HES-s), empty SNEDDS (E-SNEDDS), and standard Fusidic Acid via topical application. To produce various HES-RUT-loaded SNEDDS, aqueous phase titration was used to select cinnamon oil, Labrasol and Tween 80 (surfactants), Transcutol (co-surfactant) from a diverse pool of surfactants, oils and co-surfactants. The thermodynamic stability of HES-RUT-loaded SNEDDS was assessed by examining the globule size, surface morphology, zeta potential, polydispersity index (PDI), and percent (%) transmittance. The improved physicochemical properties of the optimized HES-RUT-SNEDDS (S-N4) formulation included particle size, zeta potential, and % transmittance. Smooth and spherical particles were discovered using Atomic Force Microscopy (AFM). These improved SNEDDS formulations demonstrated enhanced solubility and skin permeation. When compared to HES-s, E-SNEDDS, and standard fusidic acid, the optimized HES-RUT-SNEDDS demonstrated significant wound healing activity following topical application. HES-RUT-SNEDDS is a promising approach for enhancing the wound-healing potential of HES and RUT through topical administration.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"2721 - 2734"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Wound Healing Activity in Animal Model via Developing and Designing of Self-nano Emulsifying Drug Delivery System (SNEDDS) for the Co-delivery of Hesperidin and Rutin\",\"authors\":\"Ajmal Hayat, Ismail Shah, Abdul Jabbar, Ayman Nafady, Aziz Balouch, Muhammad Raza Shah, Sayyed Ibrahim Shah, Razium Ali Soomro, Sirajuddin\",\"doi\":\"10.1007/s10876-024-02679-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this work is to develop a self-nanoemulsifying drug delivery system (SNEDDS) for Hesperidin (HES) and Rutin (RUT) to improve their biopharmaceutical properties. The wound healing potential of HES-RUT-SNEDDS was compared to those of pure HES suspension (HES-s), empty SNEDDS (E-SNEDDS), and standard Fusidic Acid via topical application. To produce various HES-RUT-loaded SNEDDS, aqueous phase titration was used to select cinnamon oil, Labrasol and Tween 80 (surfactants), Transcutol (co-surfactant) from a diverse pool of surfactants, oils and co-surfactants. The thermodynamic stability of HES-RUT-loaded SNEDDS was assessed by examining the globule size, surface morphology, zeta potential, polydispersity index (PDI), and percent (%) transmittance. The improved physicochemical properties of the optimized HES-RUT-SNEDDS (S-N4) formulation included particle size, zeta potential, and % transmittance. Smooth and spherical particles were discovered using Atomic Force Microscopy (AFM). These improved SNEDDS formulations demonstrated enhanced solubility and skin permeation. When compared to HES-s, E-SNEDDS, and standard fusidic acid, the optimized HES-RUT-SNEDDS demonstrated significant wound healing activity following topical application. HES-RUT-SNEDDS is a promising approach for enhancing the wound-healing potential of HES and RUT through topical administration.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 8\",\"pages\":\"2721 - 2734\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02679-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02679-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Enhanced Wound Healing Activity in Animal Model via Developing and Designing of Self-nano Emulsifying Drug Delivery System (SNEDDS) for the Co-delivery of Hesperidin and Rutin
The aim of this work is to develop a self-nanoemulsifying drug delivery system (SNEDDS) for Hesperidin (HES) and Rutin (RUT) to improve their biopharmaceutical properties. The wound healing potential of HES-RUT-SNEDDS was compared to those of pure HES suspension (HES-s), empty SNEDDS (E-SNEDDS), and standard Fusidic Acid via topical application. To produce various HES-RUT-loaded SNEDDS, aqueous phase titration was used to select cinnamon oil, Labrasol and Tween 80 (surfactants), Transcutol (co-surfactant) from a diverse pool of surfactants, oils and co-surfactants. The thermodynamic stability of HES-RUT-loaded SNEDDS was assessed by examining the globule size, surface morphology, zeta potential, polydispersity index (PDI), and percent (%) transmittance. The improved physicochemical properties of the optimized HES-RUT-SNEDDS (S-N4) formulation included particle size, zeta potential, and % transmittance. Smooth and spherical particles were discovered using Atomic Force Microscopy (AFM). These improved SNEDDS formulations demonstrated enhanced solubility and skin permeation. When compared to HES-s, E-SNEDDS, and standard fusidic acid, the optimized HES-RUT-SNEDDS demonstrated significant wound healing activity following topical application. HES-RUT-SNEDDS is a promising approach for enhancing the wound-healing potential of HES and RUT through topical administration.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.