用于 28 纳米 CMOS 模拟语音活动检测器的 512-nW 0.003-mm2 正向-前向黑盒训练器

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Junde Li;Guoqiang Xin;Wei-Han Yu;Ka-Fai Un;Rui P. Martins;Pui-In Mak
{"title":"用于 28 纳米 CMOS 模拟语音活动检测器的 512-nW 0.003-mm2 正向-前向黑盒训练器","authors":"Junde Li;Guoqiang Xin;Wei-Han Yu;Ka-Fai Un;Rui P. Martins;Pui-In Mak","doi":"10.1109/TCSII.2024.3452112","DOIUrl":null,"url":null,"abstract":"Analog Voice Activity Detector (VAD) is a promising candidate for a power and cost-efficient solution for AIoT voice assistants. Regrettably, the PVT variation from the analog circuits and data misalignment from sensors limit the VAD accuracy with conventional backpropagation model-based training (BPMBT). This brief presents a forward-forward closed box trainer (FFBBT) for analog VADs. It trains the analog circuit without knowing the circuit model or finding its gradient. Thus, it is insensitive to PVT variation and offset, achieving a measured VAD accuracy improvement of ~3% and an accuracy variation reduction of \n<inline-formula> <tex-math>$5.6{\\times }$ </tex-math></inline-formula>\n. Moreover, a Tensor-Compressed Derivative-Free Optimizer (TCDFO) is also proposed to reduce the required memory for FFBBT by \n<inline-formula> <tex-math>$1600{\\times }$ </tex-math></inline-formula>\n. The FFBBT with TCDFO is synthesized in 28 nm CMOS with a power of 512 nW and an area of 0.003 mm2.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 11","pages":"4703-4707"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 512-nW 0.003-mm² Forward-Forward Closed Box Trainer for an Analog Voice Activity Detector in 28-nm CMOS\",\"authors\":\"Junde Li;Guoqiang Xin;Wei-Han Yu;Ka-Fai Un;Rui P. Martins;Pui-In Mak\",\"doi\":\"10.1109/TCSII.2024.3452112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analog Voice Activity Detector (VAD) is a promising candidate for a power and cost-efficient solution for AIoT voice assistants. Regrettably, the PVT variation from the analog circuits and data misalignment from sensors limit the VAD accuracy with conventional backpropagation model-based training (BPMBT). This brief presents a forward-forward closed box trainer (FFBBT) for analog VADs. It trains the analog circuit without knowing the circuit model or finding its gradient. Thus, it is insensitive to PVT variation and offset, achieving a measured VAD accuracy improvement of ~3% and an accuracy variation reduction of \\n<inline-formula> <tex-math>$5.6{\\\\times }$ </tex-math></inline-formula>\\n. Moreover, a Tensor-Compressed Derivative-Free Optimizer (TCDFO) is also proposed to reduce the required memory for FFBBT by \\n<inline-formula> <tex-math>$1600{\\\\times }$ </tex-math></inline-formula>\\n. The FFBBT with TCDFO is synthesized in 28 nm CMOS with a power of 512 nW and an area of 0.003 mm2.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"71 11\",\"pages\":\"4703-4707\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660552/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10660552/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

模拟语音活动检测器(VAD)是为人工智能物联网语音助手提供省电、低成本解决方案的理想选择。遗憾的是,模拟电路的 PVT 变化和传感器的数据错位限制了传统的基于反向传播模型的训练(BPMBT)的 VAD 精度。本简介介绍了模拟 VAD 的前向闭箱训练器 (FFBBT)。它在不知道电路模型或寻找其梯度的情况下训练模拟电路。因此,它对 PVT 变化和偏移不敏感,实现了 VAD 测量精度提高约 3%,精度变化减少 5.6{\times }$ 。此外,还提出了一种张量压缩无衍生优化器(TCDFO),将 FFBBT 所需的内存减少了 1600{times }$ 。带有 TCDFO 的 FFBBT 采用 28 纳米 CMOS 工艺合成,功耗为 512 nW,面积为 0.003 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 512-nW 0.003-mm² Forward-Forward Closed Box Trainer for an Analog Voice Activity Detector in 28-nm CMOS
Analog Voice Activity Detector (VAD) is a promising candidate for a power and cost-efficient solution for AIoT voice assistants. Regrettably, the PVT variation from the analog circuits and data misalignment from sensors limit the VAD accuracy with conventional backpropagation model-based training (BPMBT). This brief presents a forward-forward closed box trainer (FFBBT) for analog VADs. It trains the analog circuit without knowing the circuit model or finding its gradient. Thus, it is insensitive to PVT variation and offset, achieving a measured VAD accuracy improvement of ~3% and an accuracy variation reduction of $5.6{\times }$ . Moreover, a Tensor-Compressed Derivative-Free Optimizer (TCDFO) is also proposed to reduce the required memory for FFBBT by $1600{\times }$ . The FFBBT with TCDFO is synthesized in 28 nm CMOS with a power of 512 nW and an area of 0.003 mm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信