{"title":"利用电容补偿技术抑制相位误差的 Ka 波段 CMOS 可变增益放大器","authors":"Dongin Min;Changkun Park","doi":"10.1109/TCSII.2024.3452098","DOIUrl":null,"url":null,"abstract":"In this brief, we designed a Ka-band variable-gain amplifier (VGA) using a 65-nm RFCMOS process. A capacitive compensation technique was proposed to suppress the phase error of the CMOS VGA without the additional required chip area. To this end, the cascode structure widely used in CMOS VGAs was analyzed, and based on the analyzed results, a technique of using an additional capacitor in the drain node of the common-source transistor of the cascode structure was proposed to suppress phase error. Because the proposed technique may be implemented by adding only one shunt capacitor, it is possible to efficiently utilize the chip area. In order to verify the feasibility of the proposed capacitive compensation technique, an CMOS VGA was fabricated using a 65-nm RFCMOS process. In the operating frequency range of 26.5 GHz to 30.0 GHz, the variable gain range was measured to be 20.4 dB. In this case, the measured RMS phase error was suppressed to be lower than 1.0°. In addition, only one capacitor was added for the proposed technique, so the chip size was compactly designed to be 0.056 mm2.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"118-122"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ka-Band CMOS Variable-Gain Amplifier Using Capacitive Compensation Technique to Suppress Phase Error\",\"authors\":\"Dongin Min;Changkun Park\",\"doi\":\"10.1109/TCSII.2024.3452098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, we designed a Ka-band variable-gain amplifier (VGA) using a 65-nm RFCMOS process. A capacitive compensation technique was proposed to suppress the phase error of the CMOS VGA without the additional required chip area. To this end, the cascode structure widely used in CMOS VGAs was analyzed, and based on the analyzed results, a technique of using an additional capacitor in the drain node of the common-source transistor of the cascode structure was proposed to suppress phase error. Because the proposed technique may be implemented by adding only one shunt capacitor, it is possible to efficiently utilize the chip area. In order to verify the feasibility of the proposed capacitive compensation technique, an CMOS VGA was fabricated using a 65-nm RFCMOS process. In the operating frequency range of 26.5 GHz to 30.0 GHz, the variable gain range was measured to be 20.4 dB. In this case, the measured RMS phase error was suppressed to be lower than 1.0°. In addition, only one capacitor was added for the proposed technique, so the chip size was compactly designed to be 0.056 mm2.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 1\",\"pages\":\"118-122\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660544/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10660544/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ka-Band CMOS Variable-Gain Amplifier Using Capacitive Compensation Technique to Suppress Phase Error
In this brief, we designed a Ka-band variable-gain amplifier (VGA) using a 65-nm RFCMOS process. A capacitive compensation technique was proposed to suppress the phase error of the CMOS VGA without the additional required chip area. To this end, the cascode structure widely used in CMOS VGAs was analyzed, and based on the analyzed results, a technique of using an additional capacitor in the drain node of the common-source transistor of the cascode structure was proposed to suppress phase error. Because the proposed technique may be implemented by adding only one shunt capacitor, it is possible to efficiently utilize the chip area. In order to verify the feasibility of the proposed capacitive compensation technique, an CMOS VGA was fabricated using a 65-nm RFCMOS process. In the operating frequency range of 26.5 GHz to 30.0 GHz, the variable gain range was measured to be 20.4 dB. In this case, the measured RMS phase error was suppressed to be lower than 1.0°. In addition, only one capacitor was added for the proposed technique, so the chip size was compactly designed to be 0.056 mm2.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.