Jianfei Wang;Jia Hou;Fahong Zhang;Yishuo Meng;Yang Su;Chen Yang
{"title":"使用最小正形式和 Winograd 快速算法的高效并行可缩放大型整数乘法器架构","authors":"Jianfei Wang;Jia Hou;Fahong Zhang;Yishuo Meng;Yang Su;Chen Yang","doi":"10.1109/TCSII.2024.3457494","DOIUrl":null,"url":null,"abstract":"In this brief, an improved and efficient Winograd-based Large Integer Multiplication using least-positive form named WLIM is proposed, which can reduce 28.61% to 33.33% of the number of multiplications compared to least-positive form direct multiplication. By exploiting the cyclic parallelism of the improved algorithm, an Efficient and Parallelism-Scalable Large Integer Multiplier architecture named EPSM is proposed, which has two levels of adjustable parallelism. EPSM is implemented on Xilinx Virtex-7 VC709 Board, Zynq UltraScale+ XZCU19EG Device, and Alveo U250 Card, by using Vivado. Compared with the related works, EPSM can achieve a performance improvement of \n<inline-formula> <tex-math>$1.29\\times \\sim ~20.99\\times $ </tex-math></inline-formula>\n. In terms of area efficiency, EPSM can achieve \n<inline-formula> <tex-math>$3.54\\times \\sim ~41.41\\times $ </tex-math></inline-formula>\n area-time product (ATP) improvements.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"248-252"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient and Parallelism-Scalable Large Integer Multiplier Architecture Using Least-Positive Form and Winograd Fast Algorithm\",\"authors\":\"Jianfei Wang;Jia Hou;Fahong Zhang;Yishuo Meng;Yang Su;Chen Yang\",\"doi\":\"10.1109/TCSII.2024.3457494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, an improved and efficient Winograd-based Large Integer Multiplication using least-positive form named WLIM is proposed, which can reduce 28.61% to 33.33% of the number of multiplications compared to least-positive form direct multiplication. By exploiting the cyclic parallelism of the improved algorithm, an Efficient and Parallelism-Scalable Large Integer Multiplier architecture named EPSM is proposed, which has two levels of adjustable parallelism. EPSM is implemented on Xilinx Virtex-7 VC709 Board, Zynq UltraScale+ XZCU19EG Device, and Alveo U250 Card, by using Vivado. Compared with the related works, EPSM can achieve a performance improvement of \\n<inline-formula> <tex-math>$1.29\\\\times \\\\sim ~20.99\\\\times $ </tex-math></inline-formula>\\n. In terms of area efficiency, EPSM can achieve \\n<inline-formula> <tex-math>$3.54\\\\times \\\\sim ~41.41\\\\times $ </tex-math></inline-formula>\\n area-time product (ATP) improvements.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 1\",\"pages\":\"248-252\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10673984/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10673984/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Efficient and Parallelism-Scalable Large Integer Multiplier Architecture Using Least-Positive Form and Winograd Fast Algorithm
In this brief, an improved and efficient Winograd-based Large Integer Multiplication using least-positive form named WLIM is proposed, which can reduce 28.61% to 33.33% of the number of multiplications compared to least-positive form direct multiplication. By exploiting the cyclic parallelism of the improved algorithm, an Efficient and Parallelism-Scalable Large Integer Multiplier architecture named EPSM is proposed, which has two levels of adjustable parallelism. EPSM is implemented on Xilinx Virtex-7 VC709 Board, Zynq UltraScale+ XZCU19EG Device, and Alveo U250 Card, by using Vivado. Compared with the related works, EPSM can achieve a performance improvement of
$1.29\times \sim ~20.99\times $
. In terms of area efficiency, EPSM can achieve
$3.54\times \sim ~41.41\times $
area-time product (ATP) improvements.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.