Jie Chen, Chenxing Jiang, Yifan Yang, Zhendong Ge, Yaqi Han, Tianyou Zhang, Feng Chen, Ying Yang, Zhiyuan Yao, Jiwei Hou, Dawei Gu, Lei Wang
{"title":"基于 ZnO/AlGaN 多量子阱的可调谐波长深紫外 LED 的 TCAD 设计","authors":"Jie Chen, Chenxing Jiang, Yifan Yang, Zhendong Ge, Yaqi Han, Tianyou Zhang, Feng Chen, Ying Yang, Zhiyuan Yao, Jiwei Hou, Dawei Gu, Lei Wang","doi":"10.1134/S1063783424600791","DOIUrl":null,"url":null,"abstract":"<p>Multiple quantum-wells light-emitting diodes (MQWs-LEDs) are high-performance electroluminescent light sources, which is widely used in solid state lighting, medical, industrial and other fields. Understanding the light emission origin and mechanisms of MQWs-LEDs is crucial for their practical applications. Here, we show the excellent ultraviolet (UV) and deep-ultraviolet (DUV) emissions from ZnO/AlGaN MQWs-LEDs using Technology Computer Aided Design (TCAD) simulation, which deviates from the typical ZnO heterojunction LEDs. The adjustment of the structural parameters of the MQWs was performed to control the emission wavelength in the range of 335<b>–</b>366 nm. After parameter optimization, 342.6<b>–</b>348.7 nm DUV EL from ZnO/AlGaN MQWs is obtained successfully. The deconvolution analysis of the EL spectra was conducted to investigate the origin of the emissions. The results indicate that the structural parameter operation-induced emission blue-shift results from the quantum confinement effect. This work provides new references for designing ZnO-based MQWs and preparing new DUV LEDs.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TCAD Design of Deep-Ultraviolet LED Based on ZnO/AlGaN Multiple Quantum Wells with Tunable Wavelength\",\"authors\":\"Jie Chen, Chenxing Jiang, Yifan Yang, Zhendong Ge, Yaqi Han, Tianyou Zhang, Feng Chen, Ying Yang, Zhiyuan Yao, Jiwei Hou, Dawei Gu, Lei Wang\",\"doi\":\"10.1134/S1063783424600791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple quantum-wells light-emitting diodes (MQWs-LEDs) are high-performance electroluminescent light sources, which is widely used in solid state lighting, medical, industrial and other fields. Understanding the light emission origin and mechanisms of MQWs-LEDs is crucial for their practical applications. Here, we show the excellent ultraviolet (UV) and deep-ultraviolet (DUV) emissions from ZnO/AlGaN MQWs-LEDs using Technology Computer Aided Design (TCAD) simulation, which deviates from the typical ZnO heterojunction LEDs. The adjustment of the structural parameters of the MQWs was performed to control the emission wavelength in the range of 335<b>–</b>366 nm. After parameter optimization, 342.6<b>–</b>348.7 nm DUV EL from ZnO/AlGaN MQWs is obtained successfully. The deconvolution analysis of the EL spectra was conducted to investigate the origin of the emissions. The results indicate that the structural parameter operation-induced emission blue-shift results from the quantum confinement effect. This work provides new references for designing ZnO-based MQWs and preparing new DUV LEDs.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424600791\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424600791","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
TCAD Design of Deep-Ultraviolet LED Based on ZnO/AlGaN Multiple Quantum Wells with Tunable Wavelength
Multiple quantum-wells light-emitting diodes (MQWs-LEDs) are high-performance electroluminescent light sources, which is widely used in solid state lighting, medical, industrial and other fields. Understanding the light emission origin and mechanisms of MQWs-LEDs is crucial for their practical applications. Here, we show the excellent ultraviolet (UV) and deep-ultraviolet (DUV) emissions from ZnO/AlGaN MQWs-LEDs using Technology Computer Aided Design (TCAD) simulation, which deviates from the typical ZnO heterojunction LEDs. The adjustment of the structural parameters of the MQWs was performed to control the emission wavelength in the range of 335–366 nm. After parameter optimization, 342.6–348.7 nm DUV EL from ZnO/AlGaN MQWs is obtained successfully. The deconvolution analysis of the EL spectra was conducted to investigate the origin of the emissions. The results indicate that the structural parameter operation-induced emission blue-shift results from the quantum confinement effect. This work provides new references for designing ZnO-based MQWs and preparing new DUV LEDs.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.