造血干细胞命运的表观遗传调控

IF 13 1区 生物学 Q1 CELL BIOLOGY
Yiran Meng, Claus Nerlov
{"title":"造血干细胞命运的表观遗传调控","authors":"Yiran Meng, Claus Nerlov","doi":"10.1016/j.tcb.2024.08.005","DOIUrl":null,"url":null,"abstract":"<p>Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":"74 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic regulation of hematopoietic stem cell fate\",\"authors\":\"Yiran Meng, Claus Nerlov\",\"doi\":\"10.1016/j.tcb.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2024.08.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.08.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

造血干细胞(HSCs)维持着哺乳动物整个生命周期的血细胞生成。然而,人们已经清楚,在单细胞水平上,造血干细胞的一个亚群在其品系输出方面存在稳定的偏倚,这种异质性可能在包括衰老和适应性免疫在内的生理过程中发挥关键作用。对染色质可及性、DNA甲基化和组蛋白修饰的分析表明,不同品系偏向的造血干细胞表现出不同的表观遗传学特征,这些特征被刻画在定点的品系特异性增强子上。这样就可以在不启动造血干细胞中特定谱系基因表达的情况下进行谱系初始化,在控制谱系偏向的同时保持自我更新和多能性。在此,我们回顾了目前我们对表观遗传调控在不同生理条件下建立和维持造血干细胞命运决定的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Epigenetic regulation of hematopoietic stem cell fate

Hematopoietic stem cells (HSCs) sustain blood cell production throughout the mammalian life span. However, it has become clear that at the single cell level a subset of HSCs is stably biased in their lineage output, and that such heterogeneity may play a key role in physiological processes including aging and adaptive immunity. Analysis of chromatin accessibility, DNA methylation, and histone modifications has revealed that HSCs with different lineage bias exhibit distinct epigenetic traits inscribed at poised, lineage-specific enhancers. This allows for lineage priming without initiating lineage-specific gene expression in HSCs, controlling lineage bias while preserving self-renewal and multipotency. Here, we review our current understanding of epigenetic regulation in the establishment and maintenance of HSC fate decisions under different physiological conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信