Zhi-Liu Wang, Meng-Xin Hu, Yu-Long Wang, Xin-Ming Li, Song Yin
{"title":"基于纳米压痕测试和均质化方法的宋代坯石微观力学特性","authors":"Zhi-Liu Wang, Meng-Xin Hu, Yu-Long Wang, Xin-Ming Li, Song Yin","doi":"10.1186/s40494-024-01428-6","DOIUrl":null,"url":null,"abstract":"<p>Song Dynasty tilestones are one type of ancient Chinese building materials. Studying their mechanical properties is of great significance for the design and development of restoration materials. It is a challenge to sample and perform traditional tests (ϕ50mm × 100mm) for the tilestone cultural relics. In this work, a combination of nanoindentation techniques and the homogenization calculation method based on the Mori–Tanaka model were used to determine the mechanical parameters of Song Dynasty tilestones. The study process involved several steps: (1) Using X-ray diffraction and scanning electron microscopy to examine the surface morphology and mineral composition of the tilestones. (2) Determining the mechanical parameters (i.e., the elastic modulus, hardness and fracture toughness) through nanoindentation tests. (3) Upgrading mechanical parameters from micro to meso-scale using the Mori–Tanaka model and comparing these with uniaxial compression test results. The result shows that the red tilestones and green tilestone are mainly composed of quartz, feldspar and mica. The average elastic modulus of the red tilestones and the green tilestones are 29.47 GPa and 30.21 GPa, respectively. Compared with the parameter result obtained by upscaling, the deviation rates of the red tilestones and green tilestones are 10.3% and 9.6%, respectively, which proves that the test method is reliable. The nanoindentation test and homogenization approach in this work provide the robust theoretical and practical basis for evaluating the mechanical strength of Song Dynasty tilestones.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"15 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-mechanical properties of Song Dynasty tilestones based on nanoindentation tests and homogenization approach\",\"authors\":\"Zhi-Liu Wang, Meng-Xin Hu, Yu-Long Wang, Xin-Ming Li, Song Yin\",\"doi\":\"10.1186/s40494-024-01428-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Song Dynasty tilestones are one type of ancient Chinese building materials. Studying their mechanical properties is of great significance for the design and development of restoration materials. It is a challenge to sample and perform traditional tests (ϕ50mm × 100mm) for the tilestone cultural relics. In this work, a combination of nanoindentation techniques and the homogenization calculation method based on the Mori–Tanaka model were used to determine the mechanical parameters of Song Dynasty tilestones. The study process involved several steps: (1) Using X-ray diffraction and scanning electron microscopy to examine the surface morphology and mineral composition of the tilestones. (2) Determining the mechanical parameters (i.e., the elastic modulus, hardness and fracture toughness) through nanoindentation tests. (3) Upgrading mechanical parameters from micro to meso-scale using the Mori–Tanaka model and comparing these with uniaxial compression test results. The result shows that the red tilestones and green tilestone are mainly composed of quartz, feldspar and mica. The average elastic modulus of the red tilestones and the green tilestones are 29.47 GPa and 30.21 GPa, respectively. Compared with the parameter result obtained by upscaling, the deviation rates of the red tilestones and green tilestones are 10.3% and 9.6%, respectively, which proves that the test method is reliable. The nanoindentation test and homogenization approach in this work provide the robust theoretical and practical basis for evaluating the mechanical strength of Song Dynasty tilestones.</p>\",\"PeriodicalId\":13109,\"journal\":{\"name\":\"Heritage Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40494-024-01428-6\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01428-6","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Micro-mechanical properties of Song Dynasty tilestones based on nanoindentation tests and homogenization approach
Song Dynasty tilestones are one type of ancient Chinese building materials. Studying their mechanical properties is of great significance for the design and development of restoration materials. It is a challenge to sample and perform traditional tests (ϕ50mm × 100mm) for the tilestone cultural relics. In this work, a combination of nanoindentation techniques and the homogenization calculation method based on the Mori–Tanaka model were used to determine the mechanical parameters of Song Dynasty tilestones. The study process involved several steps: (1) Using X-ray diffraction and scanning electron microscopy to examine the surface morphology and mineral composition of the tilestones. (2) Determining the mechanical parameters (i.e., the elastic modulus, hardness and fracture toughness) through nanoindentation tests. (3) Upgrading mechanical parameters from micro to meso-scale using the Mori–Tanaka model and comparing these with uniaxial compression test results. The result shows that the red tilestones and green tilestone are mainly composed of quartz, feldspar and mica. The average elastic modulus of the red tilestones and the green tilestones are 29.47 GPa and 30.21 GPa, respectively. Compared with the parameter result obtained by upscaling, the deviation rates of the red tilestones and green tilestones are 10.3% and 9.6%, respectively, which proves that the test method is reliable. The nanoindentation test and homogenization approach in this work provide the robust theoretical and practical basis for evaluating the mechanical strength of Song Dynasty tilestones.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.