1H-fMRS 中 BOLD 效应及其校正的有效性和特异性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nathalie Just
{"title":"1H-fMRS 中 BOLD 效应及其校正的有效性和特异性","authors":"Nathalie Just","doi":"10.3389/fnins.2024.1433468","DOIUrl":null,"url":null,"abstract":"PurposeThis study aimed to characterize blood oxygen level-dependent (BOLD) effects in proton magnetic resonance (<jats:sup>1</jats:sup>H-MR) spectra obtained during optogenetic activation of the rat forelimb cortex to correct and estimate the accurate changes in metabolite concentration.MethodsFor a more comprehensive understanding of BOLD effects detected with functional magnetic resonance spectroscopy (fMRS) and to optimize the correction method, a 1 Hz line-narrowing effect was simulated. Then, proton functional magnetic resonance spectroscopy (<jats:sup>1</jats:sup>H-fMRS) data acquired using stimulated echo acquisition mode (STEAM) at 9.4T in rats (<jats:italic>n</jats:italic> = 8) upon optogenetic stimulation of the primary somatosensory cortex were utilized. The data were analyzed using MATLAB routines and LCModel. Uncorrected and corrected <jats:sup>1</jats:sup>H-MR spectra from the simulated and <jats:italic>in vivo</jats:italic> data were quantified and compared. BOLD-corrected difference spectra were also calculated and analyzed. Additionally, the effects of stimulated and non-stimulated water on the quantification of metabolite concentration swere investigated.ResultsSignificant mean increases in water and N-acetylaspartate (NAA) peak heights (+1.1% and +4.5%, respectively) were found to be accompanied by decreased linewidths (−0.5 Hz and −2.8%) upon optogenetic stimulation. These estimates were used for further defining an accurate line-broadening (lb) factor. The usage of a non-data-driven lb introduced false-positive errors in the metabolite concentration change estimates, thereby altering the specificity of the findings. The water and metabolite BOLD contributions were separated using different water scalings within LCModel.ConclusionThe linewidth-matching procedure using a precise lb factor remains the most effective approach for accurately quantifying small (±0.3 μmol/g) metabolic changes in <jats:sup>1</jats:sup>H-fMRS studies. A simple and preliminary compartmentation of BOLD effects was proposed, but it will require validation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validity and specificity of BOLD effects and their correction in 1H-fMRS\",\"authors\":\"Nathalie Just\",\"doi\":\"10.3389/fnins.2024.1433468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study aimed to characterize blood oxygen level-dependent (BOLD) effects in proton magnetic resonance (<jats:sup>1</jats:sup>H-MR) spectra obtained during optogenetic activation of the rat forelimb cortex to correct and estimate the accurate changes in metabolite concentration.MethodsFor a more comprehensive understanding of BOLD effects detected with functional magnetic resonance spectroscopy (fMRS) and to optimize the correction method, a 1 Hz line-narrowing effect was simulated. Then, proton functional magnetic resonance spectroscopy (<jats:sup>1</jats:sup>H-fMRS) data acquired using stimulated echo acquisition mode (STEAM) at 9.4T in rats (<jats:italic>n</jats:italic> = 8) upon optogenetic stimulation of the primary somatosensory cortex were utilized. The data were analyzed using MATLAB routines and LCModel. Uncorrected and corrected <jats:sup>1</jats:sup>H-MR spectra from the simulated and <jats:italic>in vivo</jats:italic> data were quantified and compared. BOLD-corrected difference spectra were also calculated and analyzed. Additionally, the effects of stimulated and non-stimulated water on the quantification of metabolite concentration swere investigated.ResultsSignificant mean increases in water and N-acetylaspartate (NAA) peak heights (+1.1% and +4.5%, respectively) were found to be accompanied by decreased linewidths (−0.5 Hz and −2.8%) upon optogenetic stimulation. These estimates were used for further defining an accurate line-broadening (lb) factor. The usage of a non-data-driven lb introduced false-positive errors in the metabolite concentration change estimates, thereby altering the specificity of the findings. The water and metabolite BOLD contributions were separated using different water scalings within LCModel.ConclusionThe linewidth-matching procedure using a precise lb factor remains the most effective approach for accurately quantifying small (±0.3 μmol/g) metabolic changes in <jats:sup>1</jats:sup>H-fMRS studies. A simple and preliminary compartmentation of BOLD effects was proposed, but it will require validation.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2024.1433468\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1433468","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

方法为了更全面地了解功能磁共振波谱(fMRS)检测到的 BOLD 效应并优化校正方法,模拟了 1 Hz 线窄效应。然后,利用质子功能磁共振波谱(1H-fMRS)数据,在 9.4T 下使用刺激回波采集模式(STEAM)采集大鼠(n = 8)初级躯体感觉皮层受到光遗传刺激时的数据。数据使用 MATLAB 例程和 LCModel 进行分析。对模拟数据和体内数据的未校正和校正 1H-MR 光谱进行了量化和比较。还计算和分析了 BOLD 校正差异光谱。结果发现在光遗传刺激下,水和 N-乙酰天冬氨酸(NAA)峰高的平均值显著增加(分别为 +1.1%和 +4.5%),同时线宽下降(-0.5 Hz 和 -2.8%)。这些估计值用于进一步确定精确的线宽(lb)因子。使用非数据驱动的 lb 会给代谢物浓度变化估计带来假阳性误差,从而改变研究结果的特异性。结论在 1H-fMRS 研究中,使用精确 lb 因子的线宽匹配程序仍然是准确量化微小(±0.3 μmol/g)代谢变化的最有效方法。我们提出了一个简单而初步的 BOLD 效应分区,但还需要验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validity and specificity of BOLD effects and their correction in 1H-fMRS
PurposeThis study aimed to characterize blood oxygen level-dependent (BOLD) effects in proton magnetic resonance (1H-MR) spectra obtained during optogenetic activation of the rat forelimb cortex to correct and estimate the accurate changes in metabolite concentration.MethodsFor a more comprehensive understanding of BOLD effects detected with functional magnetic resonance spectroscopy (fMRS) and to optimize the correction method, a 1 Hz line-narrowing effect was simulated. Then, proton functional magnetic resonance spectroscopy (1H-fMRS) data acquired using stimulated echo acquisition mode (STEAM) at 9.4T in rats (n = 8) upon optogenetic stimulation of the primary somatosensory cortex were utilized. The data were analyzed using MATLAB routines and LCModel. Uncorrected and corrected 1H-MR spectra from the simulated and in vivo data were quantified and compared. BOLD-corrected difference spectra were also calculated and analyzed. Additionally, the effects of stimulated and non-stimulated water on the quantification of metabolite concentration swere investigated.ResultsSignificant mean increases in water and N-acetylaspartate (NAA) peak heights (+1.1% and +4.5%, respectively) were found to be accompanied by decreased linewidths (−0.5 Hz and −2.8%) upon optogenetic stimulation. These estimates were used for further defining an accurate line-broadening (lb) factor. The usage of a non-data-driven lb introduced false-positive errors in the metabolite concentration change estimates, thereby altering the specificity of the findings. The water and metabolite BOLD contributions were separated using different water scalings within LCModel.ConclusionThe linewidth-matching procedure using a precise lb factor remains the most effective approach for accurately quantifying small (±0.3 μmol/g) metabolic changes in 1H-fMRS studies. A simple and preliminary compartmentation of BOLD effects was proposed, but it will require validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信