确定超多孔永久极化羟基磷灰石为温和条件下连续流二氧化碳转化的绿色高效催化剂

Marc Arnau, Jordi Sans, Pau Turon and Carlos Alemán
{"title":"确定超多孔永久极化羟基磷灰石为温和条件下连续流二氧化碳转化的绿色高效催化剂","authors":"Marc Arnau, Jordi Sans, Pau Turon and Carlos Alemán","doi":"10.1039/D4SU00305E","DOIUrl":null,"url":null,"abstract":"<p >We present the use of an ultraporous permanently polarized hydroxyapatite (upp-HAp) catalyst for continuous and highly efficient production of formic acid (predominant) and acetic acid using wet CO<small><sub>2</sub></small> (<em>i.e.</em> CO<small><sub>2</sub></small> bubbled into liquid water) as a reagent. In all cases, reactions were conducted at temperatures ranging from 95 to 150 °C, using a CO<small><sub>2</sub></small> constant flow of 100 mL s<small><sup>−1</sup></small>, and without applying any external electric field and/or UV radiation. Herein, we study how to transfer such a catalytic system from batch to continuous reactions, focusing on the water supply (proton source): (1) wet CO<small><sub>2</sub></small> or (2) liquid water in small amounts is introduced in the reactor. In general, the reduction of CO<small><sub>2</sub></small> to formic acid predominates over the C–C bond formation reaction. On the other hand, when liquid water is added, two interesting outcomes are observed: (1) the yield of products is higher than in the first scenario (&gt;2 mmol g<small><sub>c</sub></small><small><sup>−1</sup></small>·min<small><sup>−1</sup></small>) while the initial liquid water remains largely available due to the mild reaction temperature (95 °C); and (2) a high yield of ethanol (&gt;0.5 mmol g<small><sub>c</sub></small><small><sup>−1</sup></small>·min<small><sup>−1</sup></small>) is observed at 120 °C, as a result of the increased efficiency of the C–C bond formation. Analysis of kinetic studies through temporal and temperature dependence shows that CO<small><sub>2</sub></small> fixation is the rate limiting step, ruling out the competing effect of proton adsorption on the binding sites and confirming the crucial role of water. The activation energy for the CO<small><sub>2</sub></small> fixation reaction has been determined to be 66 ± 1 kJ mol<small><sup>−1</sup></small>, which is within the range of conventional electro-assisted catalysts. Finally, mechanistic insights on the CO<small><sub>2</sub></small> activation and role of the binding sites of upp-HAp are provided through isotopic-labeling (<small><sup>13</sup></small>CO<small><sub>2</sub></small>) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) studies.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 2871-2884"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00305e?page=search","citationCount":"0","resultStr":"{\"title\":\"Establishing ultraporous permanently polarized hydroxyapatite as a green and highly efficient catalyst for carbon dioxide conversion in continuous flow under mild conditions†\",\"authors\":\"Marc Arnau, Jordi Sans, Pau Turon and Carlos Alemán\",\"doi\":\"10.1039/D4SU00305E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We present the use of an ultraporous permanently polarized hydroxyapatite (upp-HAp) catalyst for continuous and highly efficient production of formic acid (predominant) and acetic acid using wet CO<small><sub>2</sub></small> (<em>i.e.</em> CO<small><sub>2</sub></small> bubbled into liquid water) as a reagent. In all cases, reactions were conducted at temperatures ranging from 95 to 150 °C, using a CO<small><sub>2</sub></small> constant flow of 100 mL s<small><sup>−1</sup></small>, and without applying any external electric field and/or UV radiation. Herein, we study how to transfer such a catalytic system from batch to continuous reactions, focusing on the water supply (proton source): (1) wet CO<small><sub>2</sub></small> or (2) liquid water in small amounts is introduced in the reactor. In general, the reduction of CO<small><sub>2</sub></small> to formic acid predominates over the C–C bond formation reaction. On the other hand, when liquid water is added, two interesting outcomes are observed: (1) the yield of products is higher than in the first scenario (&gt;2 mmol g<small><sub>c</sub></small><small><sup>−1</sup></small>·min<small><sup>−1</sup></small>) while the initial liquid water remains largely available due to the mild reaction temperature (95 °C); and (2) a high yield of ethanol (&gt;0.5 mmol g<small><sub>c</sub></small><small><sup>−1</sup></small>·min<small><sup>−1</sup></small>) is observed at 120 °C, as a result of the increased efficiency of the C–C bond formation. Analysis of kinetic studies through temporal and temperature dependence shows that CO<small><sub>2</sub></small> fixation is the rate limiting step, ruling out the competing effect of proton adsorption on the binding sites and confirming the crucial role of water. The activation energy for the CO<small><sub>2</sub></small> fixation reaction has been determined to be 66 ± 1 kJ mol<small><sup>−1</sup></small>, which is within the range of conventional electro-assisted catalysts. Finally, mechanistic insights on the CO<small><sub>2</sub></small> activation and role of the binding sites of upp-HAp are provided through isotopic-labeling (<small><sup>13</sup></small>CO<small><sub>2</sub></small>) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) studies.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 10\",\"pages\":\" 2871-2884\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00305e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00305e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00305e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了使用超多孔永久极化羟基磷灰石(upp-HAp)催化剂,以湿 CO2(即向液态水中通入 CO2)为试剂,连续高效地生产甲酸(主要成分)和乙酸。在所有情况下,反应都是在 95 至 150 °C 的温度范围内进行的,使用的二氧化碳恒定流量为 100 mL s-1,并且没有施加任何外部电场和/或紫外线辐射。在此,我们研究如何将这种催化系统从间歇式反应转变为连续式反应,重点是水供应(质子源):(1) 将湿二氧化碳或 (2) 少量液态水引入反应器。一般来说,二氧化碳还原成甲酸的反应比 C-C 键形成的反应占优势。另一方面,当加入液态水时,可以观察到两个有趣的结果:(1) 由于反应温度较低(95 °C),在初始液态水基本可用的情况下,生成物的产率比第一种情况高(2 mmol gc-1-min-1);(2) 由于 C-C 键形成的效率提高,在 120 °C时观察到乙醇的高产率(0.5 mmol gc-1-min-1)。通过时间和温度依赖性进行的动力学研究分析表明,二氧化碳固定是限制速率的步骤,排除了结合位点上质子吸附的竞争效应,证实了水的关键作用。二氧化碳固定反应的活化能被确定为 66 ± 1 kJ mol-1,在传统电助催化剂的范围之内。最后,通过同位素标记(13CO2)和近常压 X 射线光电子能谱(NAP-XPS)研究,对二氧化碳的活化和 upp-HAp 结合位点的作用进行了机理分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Establishing ultraporous permanently polarized hydroxyapatite as a green and highly efficient catalyst for carbon dioxide conversion in continuous flow under mild conditions†

Establishing ultraporous permanently polarized hydroxyapatite as a green and highly efficient catalyst for carbon dioxide conversion in continuous flow under mild conditions†

Establishing ultraporous permanently polarized hydroxyapatite as a green and highly efficient catalyst for carbon dioxide conversion in continuous flow under mild conditions†

We present the use of an ultraporous permanently polarized hydroxyapatite (upp-HAp) catalyst for continuous and highly efficient production of formic acid (predominant) and acetic acid using wet CO2 (i.e. CO2 bubbled into liquid water) as a reagent. In all cases, reactions were conducted at temperatures ranging from 95 to 150 °C, using a CO2 constant flow of 100 mL s−1, and without applying any external electric field and/or UV radiation. Herein, we study how to transfer such a catalytic system from batch to continuous reactions, focusing on the water supply (proton source): (1) wet CO2 or (2) liquid water in small amounts is introduced in the reactor. In general, the reduction of CO2 to formic acid predominates over the C–C bond formation reaction. On the other hand, when liquid water is added, two interesting outcomes are observed: (1) the yield of products is higher than in the first scenario (>2 mmol gc−1·min−1) while the initial liquid water remains largely available due to the mild reaction temperature (95 °C); and (2) a high yield of ethanol (>0.5 mmol gc−1·min−1) is observed at 120 °C, as a result of the increased efficiency of the C–C bond formation. Analysis of kinetic studies through temporal and temperature dependence shows that CO2 fixation is the rate limiting step, ruling out the competing effect of proton adsorption on the binding sites and confirming the crucial role of water. The activation energy for the CO2 fixation reaction has been determined to be 66 ± 1 kJ mol−1, which is within the range of conventional electro-assisted catalysts. Finally, mechanistic insights on the CO2 activation and role of the binding sites of upp-HAp are provided through isotopic-labeling (13CO2) and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信