Andrew Simon George, Sourava Chandra Pradhan, K. N. Narayanan Unni and Suraj Soman
{"title":"专为室内光伏和自供电应用设计的无孔、无间隔染料敏化光收集器","authors":"Andrew Simon George, Sourava Chandra Pradhan, K. N. Narayanan Unni and Suraj Soman","doi":"10.1039/D4SU00434E","DOIUrl":null,"url":null,"abstract":"<p >We have custom-engineered dye-sensitized solar cells (DSCs) by eliminating spacers and holes, fabricating hole-free, spacer-free (HF-SF) DSCs with a 96% active area to total area ratio. These newly engineered HF-SF dye cells provide better scalability, lower cost, and improved aesthetics with enhanced device performance delivering more than 30% efficiency under indoor/ambient illumination. Two serially interconnected HF-SF DSCs fabricated using D35:XY1b co-sensitized organic dyes and [Cu<small><sup>(I/II)</sup></small>(dmp)<small><sub>2</sub></small>] electrolyte were able to autonomously power an indoor temperature and humidity monitoring unit free of batteries at realistic indoor illumination intensities below 200 lux.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 10","pages":" 2839-2843"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00434e?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineered hole-free, spacer-free dye-sensitized light harvesters for indoor photovoltaic and self-powered applications†\",\"authors\":\"Andrew Simon George, Sourava Chandra Pradhan, K. N. Narayanan Unni and Suraj Soman\",\"doi\":\"10.1039/D4SU00434E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We have custom-engineered dye-sensitized solar cells (DSCs) by eliminating spacers and holes, fabricating hole-free, spacer-free (HF-SF) DSCs with a 96% active area to total area ratio. These newly engineered HF-SF dye cells provide better scalability, lower cost, and improved aesthetics with enhanced device performance delivering more than 30% efficiency under indoor/ambient illumination. Two serially interconnected HF-SF DSCs fabricated using D35:XY1b co-sensitized organic dyes and [Cu<small><sup>(I/II)</sup></small>(dmp)<small><sub>2</sub></small>] electrolyte were able to autonomously power an indoor temperature and humidity monitoring unit free of batteries at realistic indoor illumination intensities below 200 lux.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 10\",\"pages\":\" 2839-2843\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00434e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00434e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00434e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineered hole-free, spacer-free dye-sensitized light harvesters for indoor photovoltaic and self-powered applications†
We have custom-engineered dye-sensitized solar cells (DSCs) by eliminating spacers and holes, fabricating hole-free, spacer-free (HF-SF) DSCs with a 96% active area to total area ratio. These newly engineered HF-SF dye cells provide better scalability, lower cost, and improved aesthetics with enhanced device performance delivering more than 30% efficiency under indoor/ambient illumination. Two serially interconnected HF-SF DSCs fabricated using D35:XY1b co-sensitized organic dyes and [Cu(I/II)(dmp)2] electrolyte were able to autonomously power an indoor temperature and humidity monitoring unit free of batteries at realistic indoor illumination intensities below 200 lux.