Qaisar Maqbool, Klaus Dobrezberger, Julian Stropp, Martin Huber, Karl-Leopold Kontrus, Anna Aspalter, Julie Neuhauser, Thomas Schachinger, Stefan Löffler and Günther Rupprechter
{"title":"以氧化锌或石墨烯为支撑的双金属铜钯纳米颗粒用于将二氧化碳和一氧化碳转化为甲烷和甲醇","authors":"Qaisar Maqbool, Klaus Dobrezberger, Julian Stropp, Martin Huber, Karl-Leopold Kontrus, Anna Aspalter, Julie Neuhauser, Thomas Schachinger, Stefan Löffler and Günther Rupprechter","doi":"10.1039/D4SU00339J","DOIUrl":null,"url":null,"abstract":"<p >Carbon dioxide (CO<small><sub>2</sub></small>) and carbon monoxide (CO) hydrogenation to methane (CH<small><sub>4</sub></small>) or methanol (MeOH) is a promising pathway to reduce CO<small><sub>2</sub></small> emissions and to mitigate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO) as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized <em>via</em> various methodologies. The prepared catalysts underwent comprehensive characterization <em>via</em> high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H<small><sub>2</sub></small>-TPR and H<small><sub>2</sub></small>-TPD), and deuterium temperature-programmed desorption (D<small><sub>2</sub></small>O-TPD). In the CO<small><sub>2</sub></small> hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500 °C), Cu, Pd, and CuPd NPs (<5 wt% loading) supported on ZnO or graphene predominantly yielded CH<small><sub>4</sub></small> as the primary product, with CO generated as a byproduct <em>via</em> the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500 °C, the CO conversion was at least 40% higher than the CO<small><sub>2</sub></small> conversion, with CH<small><sub>4</sub></small> and CO<small><sub>2</sub></small> identified as the main products, the latter from water gas shift. Employing 90 wt% Cu on ZnO led to an enhanced CO conversion of 14%, with the MeOH yield reaching 10% and the CO<small><sub>2</sub></small> yield reaching 4.3% at 230 °C. Overall, the results demonstrate that lower Cu/Pd loading (<5 wt%) supported on ZnO/graphene favored CH<small><sub>4</sub></small> production, while higher Cu content (90 wt%) promoted MeOH production, for both CO<small><sub>2</sub></small> and CO hydrogenation at high pressure.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 11","pages":" 3276-3288"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00339j?page=search","citationCount":"0","resultStr":"{\"title\":\"Bimetallic CuPd nanoparticles supported on ZnO or graphene for CO2 and CO conversion to methane and methanol†\",\"authors\":\"Qaisar Maqbool, Klaus Dobrezberger, Julian Stropp, Martin Huber, Karl-Leopold Kontrus, Anna Aspalter, Julie Neuhauser, Thomas Schachinger, Stefan Löffler and Günther Rupprechter\",\"doi\":\"10.1039/D4SU00339J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon dioxide (CO<small><sub>2</sub></small>) and carbon monoxide (CO) hydrogenation to methane (CH<small><sub>4</sub></small>) or methanol (MeOH) is a promising pathway to reduce CO<small><sub>2</sub></small> emissions and to mitigate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO) as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized <em>via</em> various methodologies. The prepared catalysts underwent comprehensive characterization <em>via</em> high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H<small><sub>2</sub></small>-TPR and H<small><sub>2</sub></small>-TPD), and deuterium temperature-programmed desorption (D<small><sub>2</sub></small>O-TPD). In the CO<small><sub>2</sub></small> hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500 °C), Cu, Pd, and CuPd NPs (<5 wt% loading) supported on ZnO or graphene predominantly yielded CH<small><sub>4</sub></small> as the primary product, with CO generated as a byproduct <em>via</em> the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500 °C, the CO conversion was at least 40% higher than the CO<small><sub>2</sub></small> conversion, with CH<small><sub>4</sub></small> and CO<small><sub>2</sub></small> identified as the main products, the latter from water gas shift. Employing 90 wt% Cu on ZnO led to an enhanced CO conversion of 14%, with the MeOH yield reaching 10% and the CO<small><sub>2</sub></small> yield reaching 4.3% at 230 °C. Overall, the results demonstrate that lower Cu/Pd loading (<5 wt%) supported on ZnO/graphene favored CH<small><sub>4</sub></small> production, while higher Cu content (90 wt%) promoted MeOH production, for both CO<small><sub>2</sub></small> and CO hydrogenation at high pressure.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 11\",\"pages\":\" 3276-3288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00339j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00339j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00339j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
将二氧化碳(CO2)和一氧化碳(CO)加氢转化为甲烷(CH4)或甲醇(CH3OH)是减少二氧化碳排放和摆脱对快速枯竭的化石燃料依赖的一条可行途径。根据这一思路,研究人员通过各种方法合成了一系列催化剂,包括以氧化锌(ZnO)为载体的铜(Cu)或钯(Pd)纳米颗粒(NPs),以及以 ZnO 或石墨烯为载体的双金属 CuPd NPs。制备的催化剂通过高分辨率透射电子显微镜(HRTEM)、能量色散 X 射线光谱(EDX)图谱、电子能量损失光谱(EELS)、X 射线衍射(XRD)、氢温度编程还原和解吸(H2-TPR,-TPD)以及氘温度编程解吸(D2O-TPD)进行了全面表征。在 20 巴和高温(300 至 500 摄氏度)条件下进行的 CO2 加氢过程中,ZnO 或石墨烯上的 Cu、Pd 和 CuPd NPs(5wt.% 负载)主要以 CH4 为主要产物,而 CO 则通过反向水气变换(RWGS)反应作为副产物生成。在 400 至 500°C 的 CO 加氢过程中,CO 的转化率比 CO2 的转化率高出至少 40%,CH4 和 CO2 被确定为主要产物,后者来自水气变换。在氧化锌上使用 90wt.% 的铜可使 CO 转化率提高 14%,在 230°C 时,CH3OH 产率达到 10%,CO2 产率达到 4.3%。总之,研究结果表明,ZnO/石墨烯上较低的铜/钯负载量(<5wt.%)有利于产生 CH4,而较高的铜含量(90wt.%)则促进了 CH3OH 的产生,无论是 CO2 还是 CO 在高压下的氢化。
Bimetallic CuPd nanoparticles supported on ZnO or graphene for CO2 and CO conversion to methane and methanol†
Carbon dioxide (CO2) and carbon monoxide (CO) hydrogenation to methane (CH4) or methanol (MeOH) is a promising pathway to reduce CO2 emissions and to mitigate dependence on rapidly depleting fossil fuels. Along these lines, a series of catalysts comprising copper (Cu) or palladium (Pd) nanoparticles (NPs) supported on zinc oxide (ZnO) as well as bimetallic CuPd NPs supported on ZnO or graphene were synthesized via various methodologies. The prepared catalysts underwent comprehensive characterization via high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) mapping, electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), hydrogen temperature-programmed reduction and desorption (H2-TPR and H2-TPD), and deuterium temperature-programmed desorption (D2O-TPD). In the CO2 hydrogenation process carried out at 20 bar and elevated temperatures (300 to 500 °C), Cu, Pd, and CuPd NPs (<5 wt% loading) supported on ZnO or graphene predominantly yielded CH4 as the primary product, with CO generated as a byproduct via the reverse water gas shift (RWGS) reaction. For CO hydrogenation between 400 and 500 °C, the CO conversion was at least 40% higher than the CO2 conversion, with CH4 and CO2 identified as the main products, the latter from water gas shift. Employing 90 wt% Cu on ZnO led to an enhanced CO conversion of 14%, with the MeOH yield reaching 10% and the CO2 yield reaching 4.3% at 230 °C. Overall, the results demonstrate that lower Cu/Pd loading (<5 wt%) supported on ZnO/graphene favored CH4 production, while higher Cu content (90 wt%) promoted MeOH production, for both CO2 and CO hydrogenation at high pressure.